Подписано электронной подписью: Вержицкий Данил Григорьевич Должность: Директор КГПИ КемГУ Дата и время: 2025-04-23 00:00:00 471086fad29a3b30e244c728abc3661ab35c9d50210dcf0e75e03a5b6fdf6436

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «КЕМЕРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кузбасский гуманитарно-педагогический институт

Факультет информатики, математики и экономики

УТВЕРЖДАЮ Декан А.В. Фомина «30» января 2025 г.

Рабочая программа дисциплины

К.М.07.05 Случайные процессы и имитационное моделирование

Направление подготовки **01.03.02 Прикладная математика и информатика**

Направленность (профиль) подготовки **ИНТЕЛЛЕКТУАЛЬНЫЙ АНАЛИЗ ДАННЫХ**

Программа бакалавриата

Квалификация выпускника бакалавр

> Форма обучения *Очная*

> Год набора 2025

Новокузнецк 2025

Оглавление

1 Цель дисциплины	3
Формируемые компетенции, индикаторы достижения компетенций, знания, умения, навыки	3
Место дисциплины	3
2 Объём и трудоёмкость дисциплины по видам учебных занятий. Формы промежуточной аттестации	3
3. Учебно-тематический план и содержание дисциплины	3
3.1 Учебно-тематический план	3
4 Порядок оценивания успеваемости и сформированности компетенций обучающегося в текущей и промежуточной аттестации	
5 Материально-техническое, программное и учебно-методическое обеспечение дисциплины	5
5.1 Учебная литература	5
5.2 Материально-техническое и программное обеспечение дисциплины	5
5.3 Современные профессиональные базы данных и информационные справочные системы	6
б Иные сведения и (или) материалы	6
6.1. Примерные вопросы и задания / задачи для промежуточной аттестации	6

1 Цель дисциплины.

В результате освоения данной дисциплины у обучающегося должны быть сформированы компетенции основной профессиональной образовательной программы бакалавриата (далее - ОПОП): ОПК-3.

Формируемые компетенции, индикаторы достижения компетенций, знания, умения, навыки

Таблица 1 – Индикаторы достижения компетенций, формируемые дисциплиной

Код и название	Индикаторы достижения	Знания, умения, навыки (ЗУВ), формируемые
компетенции	компетенции по ОПОП	дисциплиной
ОПК-3 Способен	ОПК-3.1 Применяет	Знать:
· · · · · · · · · · · · · · · · · · ·	'	
		- навыками построения моделирующих алгоритмов при проектировании и разработке
		программных продуктов.

Место дисциплины

Дисциплина включена в модуль «Математическое моделирование в задачах профессиональной деятельности» ОПОП ВО. Дисциплина осваивается на 2 курсе в 4 семестре.

2 Объём и трудоёмкость дисциплины по видам учебных занятий. Формы промежуточной аттестации.

Таблица 2 – Объем и трудоемкость дисциплины по видам учебных занятий

	Объём часов
Общая трудоемкость и виды учебной работы по дисциплине, проводимые в разных	по формам
формах	обучения
	ОФО
1 Общая трудоемкость дисциплины	72
2 Контактная работа обучающихся с преподавателем (по видам учебных занятий) (всего)	50
Аудиторная работа (всего):	50
в том числе:	
лекции	14
практические занятия	36
в интерактивной форме	
3 Самостоятельная работа обучающихся (всего)	22
4 Промежуточная аттестация обучающегося - зачет	

3. Учебно-тематический план и содержание дисциплины.

3.1 Учебно-тематический план

Таблица 3 - Учебно-тематический план очной формы обучения

№ недели п/п		Общая грудоём	10	емкості (час.)		ятий	Формы текущего
I I	Разделы и темы дисциплины	кость	ОФО				контроля и промежуточной
Дел	по занятиям	(всего				CDC	аттестации успеваемости
не		час.)	-	инятия		CPC	, ,
Š			лекц.	практ.	лаб.		
Семес							
1	1. Потоки событий	8	2	2		4	Контрольная работа №1
	2. Случайные процессы	24	6	10		8	
2	2.1 Случайный процесс и его	5	2	2		1	Тест
	характеристики						
3	2.2 Выбросы случайных процессов	5		2		3	
4	2.3 Нестационарный случайный процесс	6	2	2		2	Контрольная работа
	(временной ряд)						№ 2
5	2.4 Марковский случайный процесс	8	2	4		2	Контрольная работа
							№3
	3. Системы массового обслуживания	16	2	8		6	
6	3.1 Одноканальная СМО	7	1	4		2	Контрольная работа №4
7	3.2 Многоканальная СМО	9	1	4		4	Контрольная работа
							N <u>o</u> 5
	4. Имитационное моделирование	24	4	12		8	
8	4.1 Моделирование процессов в GPSS	8	2	4		2	Индивидуальное
							задание №1
9	4.2 Моделирование процессов в ВР	8	1	4		3	Индивидуальное
	Simulator						задание №2
10	4.3 Моделирование в AnyLogic	8	1	4		3	Индивидуальное
							задание №3
	Промежуточная аттестация						зачет
ИТОГ	О по семестру 4	72	14	36		22	

4 Порядок оценивания успеваемости и сформированности компетенций обучающегося в текущей и промежуточной аттестации.

Для положительной оценки по результатам освоения дисциплины обучающемуся необходимо выполнить все установленные виды учебной работы. Оценка результатов работы обучающегося в баллах (по видам) приведена в таблице 4.

Таблица 4 - Балльно-рейтинговая оценка результатов учебной работы обучающихся по видам (БРС) в 4 семестре

Учебная работа	Сумма	Виды и результаты	Оценка в аттестации	Баллы
(виды)	баллов	учебной работы		
Текущая учебная	80	Контрольные работы	Контрольная работа (№1-6)	25-45
работа в семестре		(5 работ)	Баллы за КР:	
(Посещение			5 баллов (выполнено 51 - 65% заданий)	
занятий по			7 баллов (выполнено 66 - 85% заданий)	
расписанию и			9 баллов (выполнено 86 - 100% заданий)	
выполнение		Тест	Баллы:	1-5
заданий)			1 балл (выполнено 51 - 65% заданий)	
			3 балла (выполнено 66 - 85% заданий)	
			5 баллов (выполнено 86 - 100% заданий)	
		Индивидуальное	Индивидуальное задание (№1-3)	15-30
		задание	Баллы:	

		(3 задания)	5 баллов (выполнено 51 - 65% заданий)	
			8 баллов (выполнено 66 - 85% заданий)	
			10 баллов (выполнено 86 - 100% заданий)	
Итого по текущей работе в семестре			41 - 80	
Промежуточная	20	Решение задачи 1.	5 баллов (пороговое значение)	5 - 10
аттестация			10 баллов (максимальное значение)	
(зачет)		Решение задачи 2.	5 баллов (пороговое значение)	5 - 10
			10 баллов (максимальное значение)	
Итого по промеж	Итого по промежуточной аттестации (зачету)			
Суммарная оцен	Суммарная оценка по дисциплине: Сумма баллов текущей и промежуточной аттестации 51 – 100 б.			

В промежуточной аттестации оценка выставляется в ведомость в 100-балльной шкале и в буквенном эквиваленте (таблица 5)

Таблица 5 – Соотнесение 100-балльной шкалы и буквенного эквивалента оценки

Commanagenaning	Уровни освоения	Экзамен		Зачет
Сумма набранных баллов	дисциплины и	Оценка	Буквенный эквивалент	Буквенный
Оиллов	компетенций			эквивалент
86 - 100	Продвинутый	5	отлично	
66 - 85	Повышенный	4	хорошо	Зачтено
51 - 65	Пороговый	3	удовлетворительно	
0 - 50	Первый	2	неудовлетворительно	Не зачтено

5 Материально-техническое, программное и учебно-методическое обеспечение дисциплины.

5.1 Учебная литература

Основная учебная литература

Кобелев, Н.Б. Имитационное моделирование : учебное пособие / Н.Б. Кобелев, В.А. Половников, В.В. Девятков. – Москва : КУРС : ИНФРА-М, 2013. – 368 с. – ISBN 978-5-905554-17-9. – URL: https://new.znanium.com/read?pid=361397

Дополнительная учебная литература

Бородин, А.Н. Случайные процессы : Учебник / А.Н. Бородин - Санкт-Петербург : Издательство «Лань», 2013. — 640 с.- ISBN 978-5-8114-1526-7. — URL: https://e.lanbook.com/reader/book/12935/#2

5.2 Материально-техническое и программное обеспечение дисциплины.

Учебные занятия по лисциплине проводятся в учебных аудиториях КГПИ КемГУ:

у чеоные занятия по дисциплине проводятся в учеоных аудиториях к	I IIVI KEMI Y.
404 Учебная аудитория для проведения:	Учебный корпус
- занятий лекционного типа;	№4.
- групповых и индивидуальных консультаций;	
- текущего контроля и промежуточной аттестации.	654079,
Специализированная (учеоная) меоель: доска меловая, кафедра, столы, стулья.	ŕ
o opjazamet nepenoenoe nej rejn, sapan, npetarep.	Кемеровская
Используемое программное обеспечение: MSWindows (MicrosoftImaginePremium 3 year	область, г.
по сублицензионному договору № 1212/КМР от 12.12.2018 г. до 12.12.2021 г.), LibreOffice	Новокузнецк, пр-
(свободно распространяемое ПО), Яндекс.Браузер (отечественное свободно	гтовокузнецк, пр- кт Металлургов,
	д. 19
Интернет с обеспечением доступа в ЭИОС.	д. 17
500 Haganaranya yayay yaranyara waxayynanayya	V
	Учебный корпус
Учебная аудитория (мультимедийная) для проведения:	

- занятий лекционного типа;	№4.
- занятий семинарского (практического) типа;	
- занятий лабораторного типа;	654079,
- групповых и индивидуальных консультаций;	· ·
- самостоятельной работы;	Кемеровская
- текущего контроля и промежуточной аттестации.	область,
Специализированная (учебная) мебель: доска меловая, кафедра, столы, стулья.	Новокузнецк, пр
Оборудование для презентации учебного материала: стационарное - компьютер	кт Металлургов
преподавателя, проектор, экран. Лабораторное оборудование : <i>стационарное</i> – компьютеры для обучающихся (18 шт.).	д. 19
Используемое программное обеспечение: MSWindows (MicrosoftImaginePremium 3 year по сублицензионному договору № 1212/КМР от 12.12.2018 г. до 12.12.2021 г.), LibreOffice	
(свободно распространяемое ПО), FoxitReader (свободно распространяемое ПО), Firefox 14	
(свободно распространяемое ПО), Яндекс.Браузер (отечественное свободно	
распространяемое ПО), MathCad (Лицензия №9A1487712), Scilab(свободно	,
распространяемое ПО), SWI-Prolog (свободно распространяемое ПО)	
GPSSWorldStudentEdition (учебная версия), PSPP (свободно распространяемое ПО), Т	
FlexCAD (отечественное ПО, учебная версия), 3dsMaxDesign (Коробочная лицензия	
№0730450), MicrosoftVisualStudio (MicrosoftImaginePremium 3 year по сублицензионному	
договору № 1212/КМРот 12.12.2018 г. до 12.12.2021 г.), Интерпретатор "Ядро"	
(лицензионный договор №1 от 16.06.2020 г. до 16.06.2025 г.); Среда функционально-	
объектного программирования "Алгозит" (лицензионный договор №2 от 16.06.2020 г. до	
16.06.2025 г.), Среда статистических вычислений Rv.4.0.2 (свободно распространяемое	;
ПО).	
Интернет с обеспечением доступа в ЭИОС.	

5.3 Современные профессиональные базы данных и информационные справочные системы.

Перечень СПБД и ИСС по дисциплине

CITForum.ru - on-line библиотека свободно доступных материалов по информационным технологиям на русском языке - http://citforum.ru

Научная электронная библиотека eLIBRARY.RU — крупнейший российский информационный портал в области науки, технологии, медицины и образования, содержащий рефераты и полные тексты - www.elibrary.ru

База данных Science Direct (более 1500 журналов издательства Elsevier, среди них издания по математике и информатике), режим доступа :https://www.sciencedirect.com

6 Иные сведения и (или) материалы.

6.1. Примерные вопросы и задания / задачи для промежуточной аттестации

Семестр 4

Таблица 6 - Примерные теоретические вопросы и практические задания / задачи к зачету

Разделы и темы	Примерные теоретические	Примерные практические задания / задачи
	вопросы	
1. Потоки событи	й	
1.1 Потоки	1. Поток событий. Однородный	1. Среднее число заказов такси,
событий	поток. Регулярный поток.	поступающих на диспетчерский пункт в
	2. Поток событий. Простейший	одну минуту, равно трем (λ=3). Найти
	пуассоновский поток.	вероятность того, что за 2 мин поступит
	3. Поток событий. Ординарный	четыре вызова.
	поток.	2. Среднее число заказов такси,
	4. Поток без последействия.	поступающих на диспетчерский пункт в
	Поток Пальма. Поток Эрланга.	одну минуту, равно трем (λ=3). Найти
	5. Поток событий.	вероятность того, что за 2 мин поступит
		менее четырех вызовов.

	Интенсивность потока. 6. Стационарный и нестационарный поток. 7. Плотность потока. Математическое ожидание, дисперсия, среднее квадратическое отклонение.	3. Среднее число заказов такси, поступающих на диспетчерский пункт в одну минуту, равно трем (λ=3). Найти вероятность того, что за 2 мин поступит не менее четырех вызовов. 4. Дан простейший поток с параметром λ=2 требований в минуту. Найти вероятность того, что длина интервала между двумя соседними событиями составляет Т от 1 до 2 минут. 5. Поток машин, идущих по шоссе в одном направлении, представляет собой простейший поток с интенсивностью 8 машин в минуту. Шоссе имеет развилку в три направления. Вероятность движения машин в первом направлении равна 0,12, во втором – 0,68, в третьем – 0,20. Определить интенсивности движения автомобилей в каждом направлении. 6. В результате статистической обработки интервалов времени между событиями в некотором потоке получены следующие характеристики: среднее значение интервала m _t =2 мин; среднее квадратическое отклонение интервала σ _т =0,9 мин. Требуется подобрать поток Эрланга, обладающий приблизительно теми же характеристиками, найти его интенсивность λ _k и порядок k. 7. В результате обработки статистических данных по интервалам между событиями в потоке Пальма получены значения m _t =2 мин и σ _t =1,5мин. Подобрать порядок соответствующего потока Эрланга. 8. В результате обработки статистических данных по интервалам между событиями в потоке Пальма получены значения m _t =2 мин и σ _t =1,5мин. Подобрать порядок соответствующего потока Эрланга. 8. В результате обработки статистических данных по интервалам между событиями в потоке Пальма получены значения m _t =2 мин и σ _t =1,5мин. Определить плотность паспределения построить графики
		распределения, построить графики исходной и Эрланговской плотностей
2. Случайные проце	ecchi	распределения.
2.1 Случайный	8. Понятие случайного	9. Построить корреляционную функцию
процесс и его характеристики	процесса. Область определения и фазовое пространство случайного процесса. 9. Стационарный случайный	нормального стационарного случайного процесса, представленного на графике.
	процесс. 10. Непрерывный нормальный стационарный случайный процесс.	2 1 0 2 4 8 8 W 12 14 t. cym.
2.2 Выбросы случайных процессов	11. Понятие выброса случайного процесса. 12. Алгоритм построения корреляционных функций	10. Нормированная корреляционная функция случайного процесса имеет вид $k(\tau) = e^{-\alpha \tau } \cdot (\cos\beta\tau + \frac{\alpha}{\beta}\sin\beta \tau)$
	случайных процессов. 13. Спектральное разложение стационарных случайных процессов.	р где α =0.55, β =1.2, σ_x =0.4, \bar{x} =3.26. Найти интенсивность выбросов процесса за уровень $a = \bar{x} + \sigma_x$ и среднюю

	14 Fam v v	WA O HO WAYAYA WA CATA TA
	14. Белый шум.	продолжительность выбросов. 11. Определить спектральную плотность
		процесса S(ω), если корреляционная
		функция имеет вид
		$k(\tau) = e^{-\alpha \tau } \cdot (1 + \alpha \tau)$
2.3	15. Определение параметров	12. Провести сглаживание протокола
Нестационарный	временного ряда.	наблюдений методом скользящей средней
случайный	16. Сглаживание скользящими	по 3 точкам.
процесс	средними.	13. Провести сглаживание протокола
(временной ряд)	17. Экспоненциальное	наблюдений методом скользящей средней по 5 точкам.
	сглаживание. 18. Анализ тренда, анализ	14. Провести сглаживание протокола
	сезонности.	наблюдений методом скользящей средней
		по 7 точкам.
		15. Провести сглаживание протокола
		наблюдений методом экспоненциального
		сглаживания. 16. Сделать прогноз на 2 периода вперед
		методом экспоненциального сглаживания.
2.4 Марковский	19. Граф состояний системы.	17. Система S – машина, которая может
случайный	Размеченный граф состояний	находиться в одном из пяти состояний:
процесс	системы. Марковская цепь. 20. Вероятности состояний.	s ₁ - исправна, работает;
	Начальное распределение	s ₂ - неисправна, ожидает осмотра;
	вероятностей.	s_3 – осматривается;
	21. Вероятности перехода.	$s_{\underline{A}}$ – ремонтируется;
	Марковские процессы с дискретными состояниями и	s – списана.
	дискретными состояниями и дискретным временем.	Построить граф состояний системы.
	22. Марковские процессы с	18. Построить граф состояний системы S,
	дискретными состояниями и	представляющей техническое устройство из
	непрерывным временем	2 узлов I и II, каждый из которых может в ходе работы устройства отказать (выйти из
		строя). Отказавший узел немедленно
		начинает восстанавливаться.
		19. По цели ведется стрельба тремя
		выстрелами. Возможные состояния цели
		(системы S): s_1 - цель невредима; s_2 - цель повреждена; s_3 - цель поражена.
		Размеченный граф состояний показан на
		рисунке. В начальный момент цель
		находилась в состоянии s ₁ (не повреждена).
		Определить вероятности состояний цели
		после трех выстрелов.
		S_1
		0,5
		0,7
		S_2 S_3
3. Системы массое	вого обслуживания	
3.1	23. Понятие системы массового	20. АЗС представляет собой СМО с 1
Одноканальная	обслуживания. Заявка,	каналом обслуживания. Площадка при
CMO	обслуживающее устройство, обслуживание, длительность	станции допускает пребывание в очереди на заправку не более 3 машин одновременно.
	обслуживания, интенсивность	Если в очереди уже находится 3 машины,
	обслуживания, накопитель,	очередная машина, прибывшая на станцию,
	•	•

	очередь, длина очереди, дисциплина обслуживания. 24. Классификация СМО: без накопителя, с накопителем ограниченной емкости (СМО с потерями), с накопителем неограниченной емкости (СМО без потерь). 25. Одноканальная СМО. Математическая модель одноканальной СМО с отказами. 26. Математическая модель одноканальной СМО с неограниченной очередью. 27. Математическая модель одноканальной СМО с ограниченной очередью.	в очередь не становится, а проезжает мимо. Поток машин, прибывающих для заправки, имеет интенсивность 1 машина в минуту. Процесс заправки продолжается в среднем 1,25 мин. Определить: вероятность отказа, относительную и абсолютную пропускную способность, среднее число машин в очереди.
	28. Многоканальная СМО.	21. Трехканальная СМО с отказами
	29. Математическая модель	представляет собой 3 телефонных линии.
	многоканальной СМО с	Заявка – вызов, пришедший в момент, когда
	отказами. 30. Математическая модель	линия занята, получает отказ. Интенсивность потока вызовов λ =0.8,
	многоканальной СМО с	интенсивность потока вызовов к-0.0, интенсивность потока обслуживания
	неограниченной очередью.	μ=0,667. Найти вероятности состояний,
		абсолютную и относительную пропускную
		способности, вероятность отказа и среднее
4 77		число занятых каналов.
4. Имитационное мод		22
	31. Идея метода имитационного моделирования. Этапы	22. Выполнить моделирование одноканальной СМО с помощью GPSS.
	моделирования. Этапы имитационного моделирования.	одноканальной СМО с помощью от 55.
	32. Формирование стандартно	
	распределенных случайных	
	величин.	
	33. Язык моделирования GPSS.	
	34. Понятие бизнес-процесса.	23. Выполнить моделирование
	Модель бизнес-процесса. Блоксхема бизнес-процесса.	одноканальной СМО с помощью BP Simulator.
	35. Построение модели бизнес-	Simulator.
	процесса в BP Simulator.	
	36. Моделирование в AnyLogic.	24. Выполнить моделирование
Моделирование в	Агенты и агентное	одноканальной СМО с помощью AnyLogic.
• •	моделирование.	
	37. Блоки AnyLogic,	
	предназначенные для	
	моделирования систем массового обслуживания.	
Компетенции	массового обслуживания.	
	Задание 1	
применять и	В компьютерную сеть с множественным доступом и обнаружением конфликтов	
модифицировать	поступают некоторые пакеты. Конфликт происходит в том случае, когда время между	
	поступлениями соседних пакетов меньше, чем время передачи первого из них Найти вероятность возникновения конфликта, если процесс поступления пакетов	
-	- наити вероятность возникновения конфликта, если процесс поступления пакетов имеет пуассоновский характер с интенсивностью 5 пакетов в секунду, а время передачи	
модели для	имеет пуассоновский характер с инте	псивпостью з накстов в секупду, а время передачи
модели для решения задач в	каждого пакета равно 20 мс.	
модели для решения задач в области	каждого пакета равно 20 мс Найти ту же вероятность при	условии, что длительности передачи пакетов
модели для решения задач в области профессиональной	каждого пакета равно 20 мс Найти ту же вероятность при	условии, что длительности передачи пакетов нциально со средним значением 20 мс.

Задание 2		
Выполнить моделирование движения транспортных средств на произвольном		
перекрёстке с помощью Anylogic.		
Оценить оптимальность загруженности полос (по наличию пробок).		
Предложить варианты оптимизации.		

старший преподаватель кафедры МФММ Гаврилова Ю.С. (фамилия, инициалы и должность преподавателя (ей)) Составитель (и):