Подписано электронной подписью: Вержицкий Данил Григорьевич Должность: Директор КГПИ КемГУ Дата и время: 2025-04-23 00:00:00 471086fad29a3b30e244c728abc3661ab35c9d50210dcf0e75e03a5b6fdf6436

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «КЕМЕРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кузбасский гуманитарно-педагогический институт

Факультет информатики, математики и экономики

УТВЕРЖДАЮ Декан А.В. Фомина «30» января 2025 г.

Рабочая программа дисциплины

К.М.08.07 Пакеты прикладных программ для 3D-моделирования

Направление подготовки **01.03.02 Прикладная математика и информатика**

Направленность (профиль) подготовки **ИНТЕЛЛЕКТУАЛЬНЫЙ АНАЛИЗ ДАННЫХ**

Программа бакалавриата

Квалификация выпускника бакалавр

> Форма обучения *Очная*

Год набора 2025

Новокузнецк 2025

Оглавление

1 Цель дисциплины.	3
Формируемые компетенции, индикаторы достижения компетенций, знания, умения, навыки	3
Место дисциплины	3
2 Объём и трудоёмкость дисциплины по видам учебных занятий. Формы промежуточной аттестации.	3
3. Учебно-тематический план и содержание дисциплины	4
3.1 Учебно-тематический план	4
4 Порядок оценивания успеваемости и сформированности компетенций обучающегося в текуг и промежуточной аттестации.	
5 Материально-техническое, программное и учебно-методическое обеспечение дисциплины	5
5.1 Учебная литература	5
5.2 Материально-техническое и программное обеспечение дисциплины	6
5.3 Современные профессиональные базы данных и информационные справочные системы	6
6 Иные сведения и (или) материалы	7
6.1.Примерные темы письменных учебных работ	7
6.2. Примерные вопросы и задания / задачи для промежуточной аттестации	9

1 Цель дисциплины.

В результате освоения данной дисциплины у обучающегося должны быть сформированы компетенции основной профессиональной образовательной программы академического бакалавриата: ОПК-4.

Формируемые компетенции, индикаторы достижения компетенций, знания, умения, навыки

Таблица 1 – Индикаторы достижения компетенций, формируемые дисциплиной

Код и название компетенции	Индикаторы достижения компетенции по ОПОП	Знания, умения, навыки (ЗУВ), формируемые дисциплиной
Код и название	Индикаторы достижения	
безопасности		
		алгоритмов для решения задач геометрического моделирования; — навыками создания программных средств
		на основе моделирующих алгоритмов для решения задач геометрического
		моделирования.

Место дисциплины

Дисциплина включена в модуль «Современные информационные технологии» ОПОП ВО. Дисциплина осваивается на 4 курсе в 8 семестре.

2 Объём и трудоёмкость дисциплины по видам учебных занятий.

Формы промежуточной аттестации.

Таблица 2 – Объем и трудоемкость дисциплины по видам учебных занятий

Общая трудоемкость и виды учебной работы по дисциплине, проводимые в разных формах	Объём часов по формам обучения ОФО
1 Общая трудоемкость дисциплины	108
2 Контактная работа обучающихся с преподавателем (по видам	90
учебных занятий) (всего)	
Аудиторная работа (всего):	90
в том числе:	
лекции	18
практические работы	36
лабораторные работы	36
Внеаудиторная работа (всего):	
3 Самостоятельная работа обучающихся (всего)	18
4 Промежуточная аттестация обучающегося - зачет (8 семестр):	

3. Учебно-тематический план и содержание дисциплины.

3.1 Учебно-тематический план

Таблица 3 - Учебно-тематический план очной формы обучения

		Общая	Труд	ремкост	ъ заняті	ий (час.)	Формы
	Разделы и темы дисциплины	трудоём				. ,	текущего
$N_{\underline{0}}$		кость					контроля и
Π/Π		(всего	Ay	диторн	[.	CPC	промежуточной
		час.)	3	анятия			аттестации
		всего	лекц.	пр.	лаб.		успеваемости
1	Геометрическое моделирование.						УО
	Общие сведения. Способы создания	36	6	12	12	6	
	простых геометрических элементов.						
2	Типы геометрических моделей.						УО
	Классификация современных	36	6	12	12	6	
	методов геометрического	30	U	12	12	O	
	моделирования.						
3	Системы геометрического						УО
	моделирования твердого тела.	36	6	12	12	6	
	Поверхностное моделирование.						
4	Промежуточная аттестация						Зачет
	Итого по семестру:	108	18	36	36	18	
	ВСЕГО:	100	10	30	30	10	

4 Порядок оценивания успеваемости и сформированности компетенций обучающегося в текущей и промежуточной аттестации.

Для положительной оценки по результатам освоения дисциплины обучающемуся необходимо выполнить все установленные виды учебной работы. Оценка результатов работы обучающегося в баллах (по видам) приведена в таблице 4.

Таблица 4 - Балльно-рейтинговая оценка результатов учебной работы обучающихся по видам (БРС)

Учебная работа	Сумма	Виды и результаты	Оценка в аттестации	Баллы
(виды)	баллов	учебной работы		
Текущая учебная	60	Лекционные занятия	3 балла посещение 1 лекционного	4-12
работа в семестре		(посещение)	занятия	
(Посещение		(9 занятий)		
занятий по		Лабораторные занятия	1 балл - посещение 1 лабораторного	9-18
расписанию и		(18 занятий).	занятия	
выполнение		Контрольные работы	За одну КР от 3 до:	18-29
заданий)		(отчет о выполнении	2,5 балла (выполнено 51 - 65% заданий)	
		контрольной работы)	3 балла (выполнено 66 - 85% заданий)	
		(7 работ)	4,1 балла (выполнено 86-100% заданий)	
Итого по текуще	й работе і	в семестре		31-60
Промежуточная	40	Устный ответ на вопрос	4 балла (пороговое значение)	4-15
аттестация			15 баллов (максимальное значение)	
(экзамен)		Решение задачи	6 баллов (пороговое значение)	6-25
			25 баллов (максимальное значение)	
Итого по промежуточной аттестации (экзамену)			20-40	
Суммарная оцен	ка по дис	циплине: Сумма балл	ов текущей и промежуточной аттестации	51 – 100 б.

В промежуточной аттестации оценка выставляется в ведомость в 100-балльной шкале и в буквенном эквиваленте (таблица 5)

Таблица 5 – Соотнесение 100-балльной шкалы и буквенного эквивалента оценки

Cymra gafragus y	Уровни освоения		Экзамен	
Сумма набранных баллов	дисциплины и	Оценка	Буквенный эквивалент	Буквенный
บนมมิเยช	компетенций			эквивалент
86 - 100	Продвинутый	5	отлично	
66 - 85	Повышенный	4	хорошо	Зачтено
51 - 65	Пороговый	3	удовлетворительно	
0 - 50	Первый	2	неудовлетворительно	Не зачтено

5 Материально-техническое, программное и учебно-методическое обеспечение дисциплины.

5.1 Учебная литература

Основная учебная литература

1. Супрун, Л.И. Геометрическое моделирование в начертательной геометрии [Электронный ресурс]: учебн. пособие / Л.И. Супрун, Е.Г. Супрун. – Электрон.текстовые дан. – Красноярск :Сиб. федер. ун-т, 2011. – Режим доступа: http://znanium.com/bookread.php?book=443218

Дополнительная учебная литература

- 1. Инженерная 3D-компьютерная графика в 2 т. Том 2 : учебник и практикум для вузов / А. Л. Хейфец, А. Н. Логиновский, И. В. Буторина, В. Н. Васильева ; под редакцией А. Л. Хейфеца. 3-е изд., перераб. и доп. Москва : Издательство Юрайт, 2023. 279 с. (Высшее образование). ISBN 978-5-534-02959-8. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/513028.
- 2. Инженерная 3D-компьютерная графика в 2 т. Том 1 : учебник и практикум для вузов / А. Л. Хейфец, А. Н. Логиновский, И. В. Буторина, В. Н. Васильева ; под редакцией А. Л. Хейфеца. 3-е изд., перераб. и доп. Москва : Издательство Юрайт, 2023. 328 с. (Высшее образование). ISBN 978-5-534-02957-4. Текст : электронный // Образовательная

5.2 Материально-техническое и программное обеспечение дисциплины.

Учебные занятия по дисциплине проводятся в учебных аудиториях КГПИ ФГБОУ ВО «КемГУ»:

Учебный корпус №4.

654079, Кемеровская

область, г. Новокузнецк,

пр-кт Металлургов, д. 19

508 Лаборатория компьютерного моделирования.

Учебная аудитория (мультимедийная) для проведения:

- занятий лекционного типа;
- занятий семинарского (практического) типа;
- занятий лабораторного типа;
- групповых и индивидуальных консультаций;
- самостоятельной работы;
- текущего контроля и промежуточной аттестации.

Специализированная (учебная) мебель: доска меловая, кафедра, столы, стулья.

Оборудование для презентации учебного материала: стационарное компьютер преподавателя, проектор, экран.

Лабораторное оборудование: *стационарное* – компьютеры для обучающихся (18 шт.).

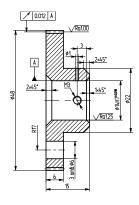
Используемое программное обеспечение: **MSWindows** (MicrosoftImaginePremium 3 year по сублицензионному договору № 1212/КМР от 12.12.2018 г. до 12.12.2021 г.), LibreOffice (свободно распространяемое ПО), FoxitReader (свободно распространяемое ПО), Firefox ПО). распространяемое Яндекс.Браузер (отечественное своболно распространяемое ПО), MathCad (Лицензия №9A1487712), Scilab(свободно распространяемое ПО), SWI-Prolog (свободно распространяемое ПО), GPSSWorldStudentEdition (учебная версия), PSPP (свободно распространяемое ПО), T-FlexCAD (отечественное ПО, учебная версия), 3dsMaxDesign №0730450), (Коробочная лицензия MicrosoftVisualStudio (MicrosoftImaginePremium 3 year по сублицензионному договору № 1212/КМРот 12.12.2018 г. до 12.12.2021 г.), Интерпретатор "Ядро" (лицензионный договор №1 от 16.06.2020 г. до 16.06.2025 г.); Среда функционально-объектного программирования "Алгозит" (лицензионный договор №2 от 16.06.2020 г. до 16.06.2025 г.), Среда статистических вычислений Rv.4.0.2 (свободно распространяемое ПО). Интернет с обеспечением доступа в ЭИОС.

5.3 Современные профессиональные базы данных и информационные справочные системы.

Перечень СПБД и ИСС по дисциплине

Научная электронная библиотека eLIBRARY.RU — крупнейший российский информационный портал в области науки, технологии, медицины и образования, содержащий рефераты и полные тексты - www.elibrary.ru

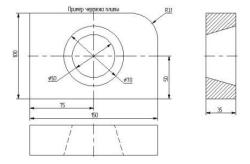
- 1. Инженерная 3D-компьютерная графика в 2 т. Том 2 : учебник и практикум для вузов / А. Л. Хейфец, А. Н. Логиновский, И. В. Буторина, В. Н. Васильева ; под редакцией А. Л. Хейфеца. 3-е изд., перераб. и доп. Москва : Издательство Юрайт, 2023. 279 с. (Высшее образование). ISBN 978-5-534-02959-8. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/513028.
- 2. Инженерная 3D-компьютерная графика в 2 т. Том 1 : учебник и практикум для вузов / А. Л. Хейфец, А. Н. Логиновский, И. В. Буторина, В. Н. Васильева ; под редакцией А. Л. Хейфеца. 3-е изд., перераб. и доп. Москва : Издательство Юрайт, 2023. 328 с. (Высшее образование). ISBN 978-5-534-02957-4. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/513027.


База стандартов и нормативов - http://www.tehlit.ru/list.htm

6 Иные сведения и (или) материалы.

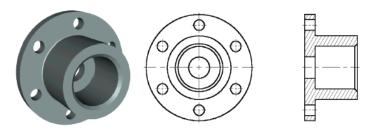
6.1.Примерные темы письменных учебных работ

6.1.1 Контрольная работа «Автоматизированное черчение»


Построение непараметрического чертежа в 3DSMAX DESIGN. Чертеж зубчатого колеса.

6.1.2 Контрольная работа «Параметрическое черчение»

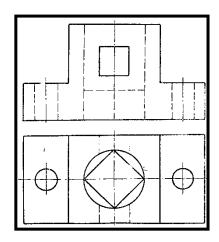
Основы создания параметрического чертежа.


Параметрический режим черчения в 3DSMAX DESIGN принципиально отличается от режима черчения в режиме эскиза.

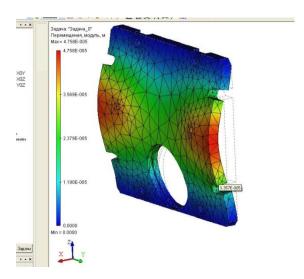
6.1.3 Контрольная работа «Трехмерное моделирование»

В системе 3DSMAX DESIGN существуют различные подходы к созданию 3D модели: 1) можно создавать 3D модель на основе готовых 2D чертежей или вспомогательных 2D-построений; 2) все построения в основном производятся в 3D окне.

На рис. представлено изображение детали, которую необходимо создать.



6.1.4 Контрольная работа «Построение 3D модели»


6.1.5 Контрольная работа «Аксонометрическая проекция и 3D модель»

- 1) по двум заданным видам построить третье изображение (вид слева),нанести размеры;
- 2) выполнить аксонометрическую проекцию данного объекта (прямоугольную изометрию);
- 3) выполнить построение 3D.

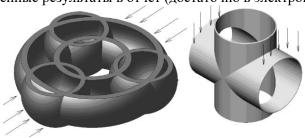
6.1.6 Контрольная работа «Статические прочностные расчеты конструкций»

Цель работы: овладеть методикой проведения статического прочностного анализа для оценки напряженного состояния конструкции, находящейся под действием не изменяющихся во времени (статических) силовых воздействий.

6.1.7 Контрольная работа «Параметрическое исследование детали с помощью инструментов 3dsMax Design»

Смоделировать деталь, данную по картотеке.

Выполнить параметрическое исследование данной детали с помощью инструмента 3dsMax Design:


Задать материал для детали и закрепления детали.

Задать силовую нагрузку.

Провести варьирование нагрузки (10 опытов) и получить зависимость для максимальных и минимальных напряжений и максимальных деформаций, возникающих в данной детали под действием нагрузки.

Сделать выводы для данного объекта.

Сформировать полученные результаты в отчет (достаточно в электронном виде, Word).

6.2. Примерные вопросы и задания / задачи для промежуточной аттестации

Семестр 8

Таблица 6 - Примерные теоретические вопросы задачи к зачету

Разделы и темы	Примерные теоретические вопросы	Примерные практические
		задания
1. Геометрическое	1. Понятие модели, геометрической	Построение
моделирование. Общие	модели и геометрического объекта.	параметрического
сведения. Способы	2. Требования к процессу	чертежа.
создания простых	геометрического моделирования.	
геометрических	3. Виды простейших геометрических	
элементов.	элементов и основные способы их	
	создания.	
	4. Создание геометрических	
	элементов. Создание элементарных	
	кривых. Построение поверхностей	
	5. Построить непараметрический	
	чертеж в 3DSMAX DESIGN.	
	6. Построить параметрический чертеж	
	в 3DSMAX DESIGN	
	7. Построить два чертежа, параметры	
	которых связаны между собой	
	формулами.	
2. Типы	8. Способы представления	Создать в системе
геометрических	поверхности модели.	3DSMAX DESIGN 3D
моделей.	9. Геометрические модели хранения и	модель на основе готовых
Классификация	визуализации.	2D чертежей или
современных методов	10. Способы описания геометрических	вспомогательных 2D-
геометрического	моделей.	построений.
моделирования.	11. Методы геометрического	
	моделирования твердого тела.	
	12. Методы геометрического	
	моделирования поверхностей.	
	13. Классы динамических	
	поверхностей.	
	14. Каркасно-кинематический метод	
	построения поверхностей.	

	15 16	<u> </u>
	15. Каркасная или проволочная модель	
	проектирования.	
	16. Алгоритмы преобразования модели	
	конструктивной геометрии в	
	кусочно-аналитическую модель.	
	17. Четырехуровневая иерархическая	
	структура кусочно-аналитической	
	модели твердого тела.	
	18. Создать базу данных для детали с	
	заданного чертежа.	
	19. Создать в системе 3DSMAX	
	DESIGN 3D модель на основе	
	готовых 2D чертежей или	
	вспомогательных 2D-построений.	
	_	
	20. По двум заданным видам построить	
	третье изображение (вид слева),	
	нанести размеры;	
	21. Выполнить аксонометрическую	
	проекцию данного объекта	
	(прямоугольную изометрию);	
	22. Выполнить построение 3D модели	
	данного объекта.	
3. Системы	23. Алгебрологическая граничная	Выполнить
геометрического	модель твердого тела.	параметрическое
моделирования	24. Задачи аппроксимации,	исследование детали.
твёрдого тела.	интерполяции и сглаживания при	
Поверхностное	решении задач машинного	
моделирование.	представления поверхностей.	
	25. Методы аппроксимации и	
	интерполяции кривых.	
	26. Операторная форма	
	представления поверхностей.	
	27. Линейчатые поверхности.	
	28. Представление поверхностей с	
	помощью В-сплайнов.	
	29. Конструирование свободных	
	поверхностей методом Безье.	
	-	
	_	
	аппроксимации поверхностей Кунса.	
	31. Выполнить построение	
	чертежей деталей в 3DSMAX DESIGN,	
	и произвести сборку деталей.	
	32. Смоделировать деталь, данную	
	по картотеке.	
	33. Выполнить параметрическое	
	исследование детали с помощью	
	инструмента 3dsMax Design: задать	
	материал для детали и закрепления	
	детали, силовую нагрузку.	
Компетенции		

информационной безопасности	1 1	Задание 1 Дано изображение детали. Необходимо: 1) Определить какая САПР позволит изобразить трехмерную модель детали. 2) Записать последовательный алгоритм изображения детали с описанием применяемых функций
-----------------------------	-----	--

Составитель (и): канд. физ.-мат. наук, доцент Вячкина Е.А. (фамилия, инициалы и должность преподавателя (ей))