Подписано электронной подписью: Вержицкий Данил Григорьевич Должность: Директор КГПИ КемГУ Дата и время: 2025-04-23 00:00:00 471086fad29a3b30e244c728abc3661ab35c9d50210dcf0e75e03a5b6fdf6436

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «КЕМЕРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кузбасский гуманитарно-педагогический институт

Факультет информатики, математики и экономики

УТВЕРЖДАЮ Декан А.В. Фомина «30» января 2025 г.

Рабочая программа дисциплины

К.М.07.01 Алгебра и геометрия

Направление подготовки **01.03.02 Прикладная математика и информатика**

Направленность (профиль) подготовки **ИНТЕЛЛЕКТУАЛЬНЫЙ АНАЛИЗ ДАННЫХ**

Программа бакалавриата

Квалификация выпускника бакалавр

> Форма обучения *Очная*

Год набора 2025

Новокузнецк 2025

Оглавление

1 Цель дисциплины.	3
Формируемые компетенции, индикаторы достижения компетенций, знания, умения, навыки	
Место дисциплины	3
2 Объём и трудоёмкость дисциплины по видам учебных занятий. Формы промежуточной аттестации	3
3. Учебно-тематический план и содержание дисциплины	4
3.1 Учебно-тематический план	4
4 Порядок оценивания успеваемости и сформированности компетенций обучающегося в текуп и промежуточной аттестации	
5 Материально-техническое, программное и учебно-методическое обеспечение дисциплины	8
5.1 Учебная литература	8
5.2 Материально-техническое и программное обеспечение дисциплины	9
5.3 Современные профессиональные базы данных и информационные справочные системы	9
6 Иные сведения и (или) материалы	10
6.1.Примерные темы письменных учебных работ	10
6.2. Примерные вопросы и задания / задачи для промежуточной аттестации	15

1 Цель дисциплины.

В результате освоения данной дисциплины у обучающегося должна быть сформирована компетенция основной профессиональной образовательной программы бакалавриата ОПК-1.

Формируемые компетенции, индикаторы достижения компетенций, знания, умения, навыки

Таблица 1 – Индикаторы достижения компетенций, формируемые дисциплиной

г <u>аолица т – индикатор</u>	ы достижения компетенци	ии, формируемые дисциплинои
Код и название	Индикаторы достижения	Знания, умения, навыки (ЗУВ), формируемые
компетенции	компетенции по ОПОП	дисциплиной
ОПК-1. Способен	1.1 строго доказывает	Знать:
применять	математические	- основные факты, концепции и принципы
фундаментальные	утверждения,	алгебры и геометрии.
знания, полученные в	основываясь на фактах и	Уметь:
области	концепциях теорий в	 грамотно пользоваться языком алгебры и
математических и	области математических	геометрии;
(или) естественных	и естественных наук,	
` ′	выделяя главные смысловые аспекты в	- строго доказывать математические
наук, и использовать		утверждения в области алгебры и геометрии,
ИХ В	доказательствах; 1.2 Решает практические	выделяя главные смысловые аспекты в
профессиональной	задачи на основе	доказательствах;
деятельности	фундаментальных знаний	– применять знания алгебры и геометрии для
	в области математических	решения практических задач.
	и естественных наук	Владеть:
	1.3 Решает	способностью решать профессиональные
	профессиональные задачи	задачи в исследовательской и прикладной
	в исследовательской и	деятельности, используя основы алгебры и
	прикладной	_
	деятельности, используя	геометрии.
	основы современных	
	математических теорий	

Место дисциплины

Дисциплина включена в модуль «Математическое моделирование в задачах профессиональной деятельности» ОПОП ВО. Дисциплина осваивается на 1 курсе в 1-2 семестрах.

2 Объём и трудоёмкость дисциплины по видам учебных занятий.

Формы промежуточной аттестации.

Таблица 2 – Объем и трудоемкость дисциплины по видам учебных занятий

Общая трудоемкость и виды учебной работы по дисциплине, проводимые в разных формах	Объём часов по формам обучения ОФО
1 Общая трудоемкость дисциплины	360
2 Контактная работа обучающихся с преподавателем (по видам учебных занятий) (всего)	160
Аудиторная работа (всего):	160
в том числе:	
лекции	64
практические занятия, семинары	96
Внеаудиторная работа (всего):	
3 Самостоятельная работа обучающихся (всего)	128
4 Промежуточная аттестация обучающегося: - экзамен (1 семестр); - экзамен (2 семестр).	72

3. Учебно-тематический план и содержание дисциплины.

3.1 Учебно-тематический план

Таблица 3 - Учебно-тематический план очной формы обучения

№ недели п/п		Общая Трудоемкость занятий грудоём (час.)		Формы текущего		
III	Разделы и темы дисциплины	кость		ОФО	контроля и	
де	по занятиям	(всего	Ауди	торн.	промежуточно й аттестации	
і не		час.)		RИТИ	CPC	успеваемости
	200m 1		лекц.	практ.		
Сем	естр 1 1. Матричная алгебра	22	8	6	8	
1	1.1 Матрицы, операции над матрицами	8	2	2	4	
2	1.2.Определители, их свойства. Миноры и	6	2	2	2	Индивидуа
2	алгебраические дополнения. Разложение	0	2	2	2	льное
	определителя по элементам ряда					
3	1.3. Обратная матрица. Ранг матрицы	8	4	2	2	задание
3		26	8		8	
1	2. Системы линейных уравнений			10		
4	2.1. Решение систем п линейных алгебраических	6	2	2	2	
	уравнений с п неизвестными методом Крамера.		2	2	2	10
5	2. 2. Решение систем линейных алгебраических	6	2	2	2	Контрольна
	уравнений и матричных уравнений с помощью					я работа
	обратной матрицы.					Кейс-
6	2.3. Теорема Кронекера-Капелли.	6	2	2	2	задание
7	2.4. Решение систем m линейных алгебраических	8	2	4	2	
	уравнений с n неизвестными методом Гаусса.					
	3. Векторная алгебра (геометрические векторы)	28	4	4	20	
8	3.1. Векторы на плоскости и в пространстве.	9	1	1	7	
	Линейные операции над векторами.					Контрольна
9	3.2. Скалярное произведение векторов, его	9	1	1	7	я работа
	основные свойства, координатное выражение.					и расота
10	3. 3. Векторное и смешанное произведение	10	2	2	6	
	векторов, их основные свойства, приложения					
	4. Аналитическая геометрия на плоскости	28	8	8	12	
11	4.1. Система координат на плоскости. Основные	6	2	2	2	
	задачи.					Индивидуал
12	4.2. Прямая на плоскости. Способы задания.	8	2	2	4	ьное
13	4.3.Угол между двумя прямыми. Расстояние от	8	2	2	4	задание
	точки до прямой.					
14	4.4. Линии второго порядка.	6	2	2	2	
	5. Аналитическая геометрия в пространстве	40	8	16	16	
15	5.1. Плоскость. Различные уравнения плоскости.	10	2	4	4	Контрольна
	Угол между плоскостями. Условие параллельности					я работа
	и перпендикулярности двух плоскостей.					
16	5.2. Прямая в пространстве. Способы задания.	10	2	4	4	
	Условие параллельности и перпендикулярности					
	прямых.					
17	5.3.Взаимное расположение прямой и плоскости в	10	2	4	4	
	пространстве.					
18	5.4. Поверхности второго порядка	10	2	4	4	
	Промежуточная аттестация - экзамен	36				экзамен
ИТС	ОГО по 1 семестру	180	36	44	64	36
	естр 2					
	1. Комплексные числа	26	4	8	14	
	1	•		•		

п/л		Общая грудоём		мкость	занятий	Формы	
— № недели п/п	Разделы и темы дисциплины	кость	ОФО			текущего контроля и	
дел	по занятиям	(всего	Ауди			промежуточно	
не		час.)	заня		CPC	й аттестации успеваемости	
Ž			лекц.	практ.		успеваемости	
1	1.1. Определение комплексного числа.	13	2	4	7		
	Комплексная плоскость. Форма записи					Контрольна	
	комплексных чисел.					я работа	
2	1.2. Операции над комплексными числами.	13	2	4	7		
	2. Линейные пространства	62	12	20	30		
3	2.1. Линейные векторные пространства. Линейная	12	2	4	6		
	зависимость векторов.						
4	2.2. Размерность и базис векторного пространства.	16	2	8	6	Контрольна	
5	2.3. Переход к новому базису.	8	2	2	4	я работа	
6	2.4. Линейные подпространства. Сумма и	8	2	2	4	Коллоквиум	
	пересечение линейных подпространств.						
7	2.5. Евклидовы пространства.	10	2	2	6		
8	2.6. Ортонормированная система векторов.	8	2	2	4		
	Ортогональное дополнение						
	3. Линейные операторы	40	10	20	10		
9	3.1. Линейные операторы и их свойства.	8	2	4	2		
10	3.2. Матрицы оператора в разных базисах.	8	2	4	2		
	Определитель оператора в разных базисах.					T.C.	
11	3.3. Преобразование матрицы линейного	8	2	4	2	Контрольна	
	оператора.					я работа	
12	3.4. Собственные векторы и собственные значения	8	2	4	2		
	линейного оператора.						
13	3.5.Приведение матрицы линейного оператора к	8	2	4	2		
	диагональному виду						
	4. Квадратичные формы	16	2	4	10		
14	4.1. Квадратичные формы. Приведение	7	1	2	4		
	квадратичной формы к каноническому виду.					Контрольна	
15	4.2. Критерий Сильвестра	9	1	2	6	я работа	
16	Промежуточная аттестация - экзамен	36				экзамен	
	ГО по 2 семестру	180	28	52	64	36	
	Всего:	360	64	96	128	72	

4 Порядок оценивания успеваемости и сформированности компетенций обучающегося в текущей и промежуточной аттестации.

Для положительной оценки по результатам освоения дисциплины обучающемуся необходимо выполнить все установленные виды учебной работы. Оценка результатов работы обучающегося в баллах (по видам) приведена в таблице 4.

Таблица 4 - Балльно-рейтинговая оценка результатов учебной работы обучающихся

по видам (БРС)

1 семестр

Учебная работа	Сумма	Виды и результаты	Оценка в аттестации	Баллы			
(виды)	баллов	учебной работы		(17 недель)			
Текущая учебная	60	Индивидуальное	За ИЗ от 5 до 10 баллов	10-20			
работа в семестре		задание (2 задания)	5 баллов (пороговое значение)				
			10 баллов (максимальное значение)				
		Контрольные работы	За одну КР от 5до:10 баддов				
		(защита контрольной	5баллов (пороговое значение)	15 - 30			
		работы)	10 баллов (максимальное значение)				
		(3 работы)					
		Кейс-задание	ббаллов (пороговое значение)	6- 10			
			10 баллов (максимальное значение)				
Итого по текуще	й работе	в семестре		31 - 60			
Промежуточная	40	Решение задачи 1.	5 баллов (пороговое значение)	5 - 10			
аттестация			10 баллов (максимальное значение)				
(экзамен)		Решение задачи 2.	5 баллов (пороговое значение)	5 - 10			
			10 баллов (максимальное значение)				
		Вопрос билета №1	5 баллов (пороговое значение)	5 - 10			
			10 баллов (максимальное значение)				
		Вопрос билета №2	5 баллов (пороговое значение)	5- 10			
			10 баллов (максимальное значение)				
Итого по промеж	Итого по промежуточной аттестации (экзамену)						
Суммарная оценка по дисциплине: Сумма баллов текущей и промежуточной аттестации 50 – 100 б.							

2 семестр

	1				
Учебная работа	Сумма	Виды и результаты	Оценка в аттестации	Баллы	
(виды)	баллов	учебной работы		(17 недель)	
Текущая учебная	60	Контрольные работы	За одну КР от 5до:10 баддов		
работа в семестре		(защита контрольной	5 баллов (пороговое значение)	20- 40	
		работы)	10 баллов (максимальное значение)		
		(4 работы)			
		Коллоквиум	11 баллов (пороговое значение)	11- 20	
			20 баллов (максимальное значение)		
Итого по текущей работе в семестре 31 - 60					
Промежуточная	40	Решение задачи 1.	5 баллов (пороговое значение)	5 - 10	
аттестация			10 баллов (максимальное значение)		
(экзамен)		Решение задачи 2.	5 баллов (пороговое значение)	5 - 10	
			10 баллов (максимальное значение)		
		Вопрос билета №1	5 баллов (пороговое значение)	5 - 10	
			10 баллов (максимальное значение)		
		Вопрос билета №2	5 баллов (пороговое значение)	5- 10	
			10 баллов (максимальное значение)		
Итого по промеж	уточной	аттестации (экзамену)		20 – 40 б.	
Суммарная оценка по дисциплине: Сумма баллов текущей и промежуточной аттестации 50 – 100 б.					

В промежуточной аттестации оценка выставляется в ведомость в 100-балльной шкале и в буквенном эквиваленте (таблица 5)

Таблица 5 – Соотнесение 100-балльной шкалы и буквенного эквивалента оценки

Commanagenanum	Уровни освоения	Экзамен		Зачет
Сумма набранных баллов	дисциплины и	Оценка	Буквенный эквивалент	Буквенный
оаллов	компетенций			эквивалент
86 - 100	Продвинутый	5	отлично	
66 - 85	Повышенный	4	хорошо	Зачтено
51 - 65	Пороговый	3	удовлетворительно	
0 - 50	Первый	2	неудовлетворительно	Не зачтено

5 Материально-техническое, программное и учебно-методическое обеспечение дисциплины.

5.1 Учебная литература

Основная учебная литература

- 1. Рудык, Б.М. Линейная алгебра [Электронный ресурс]: учебн. пособие / Б.М. Рудык Электрон. текстовые дан. Москва : ИНФРА-М, 2013. 318 с. Режим доступа: http://znanium.com/bookread2.php?book=363158
- 2. Бортаковский, А.С. Линейная алгебра в примерах и задачах [Электронный ресурс]: учебн. пособие / А.С. Бортаковский, А.В. Пантелеев Электрон. текстовые дан. Москва : ИНФРА-М, 2015. 592 с. Режим доступа: http://znanium.com/bookread2.php?book=494895

Дополнительная учебная литература

- 1. Шершнев, В.Г. Основы линейной алгебры и аналитической геометрии [Электронный ресурс]: учебн. пособие / В.Г. Шершнев Электрон. текстовые дан. Москва : ИНФРА-М, 2014. 168 с. Режим доступа: http://znanium.com/bookread2.php?book=318084
- 2. Индивидуальные задания по высшей математике: [Электронный ресурс]: учебн. пособие. В 4 ч. Ч. 1 Линейная и векторная алгебра. Аналитическая геометрия. Дифференциальное исчисление функций одной переменной / А.П. Рябушко [и др.]; под общ. ред. А.П. Рябушко 7-е изд. Электрон. текстовые дан. Минск : Выш. шк., 2013. 304 с. Режим доступа: http://znanium.com/bookread2.php?book=508859
- 3. Бортаковский, А.С. Линейная алгебра и аналитическая геометрия. Практикум [Электронный ресурс]: учебн. пособие / А.С. Бортаковский, А.В. Пантелеев Электрон. текстовые дан. Москва : ИНФРА-М, 2015. 352 с. Режим доступа: http://znanium.com/bookread2.php?book=476097
- 4. Бутузов В. Ф. Линейная алгебра в вопросах и ответах [Текст] : учебное пособие для вузов / В. Ф. Бутузов, Н. Ч. Крутицкая, А. А. Шишкин ; под ред. В. Ф. Бутузова. Москва : ФИЗМАТЛИТ, 2001. 247 с.
- 5. Ильин В. А. Линейная алгебра [Текст] : учебник. Издание 6-е, стреотипное. Москва : Физматлит, 2005. 280 с. (Курс высшей математики и математической физики ; вып. 4). Гриф МО "Рекомендовано".
- 6. Линейная алгебра [Текст] : методические указания к практической и самостоятельной работам / Новокузнецкий филиал-институт ГОУ ВПО "КемГУ", Факультет информационных технологий, Кафедра математики и математического моделирования; сост. Ю. В. Шпакова. Новокузнецк, 2010. 27 с.
- 7. Канатников, А. Н. Аналитическая геометрия [Текст] : учебник для вузов. Москва : Академия, 2009. 208 с. (Университетский учебник). Гриф МО "Рекомендовано"
- 8. Алгебра и геометрия : [Электронный ресурс]учеб. пособие : / Г.И. Шуман, О.А. Волгина, Н.Ю. Голодная. Электрон. текстовые дан.— М. : РИОР : ИНФРА-М, 2018. (Высшее образование). 160 с. Режим доступа: http://znanium.com/bookread2.php?book=908228
 - 9. Алгебра и геометрия. Сборник задач и решений с применением системы

Марlе [Электронный ресурс] : учеб. пособие / М.Н. Кирсанов, О.С. Кузнецова. — Электрон. текстовые дан. — М. : ИНФРА-М, 2017. — 272 с. — (Высшее образование: Бакалавриат). — Режим доступа: http://znanium.com/bookread2.php?book=648409

10. Линейная алгебра и многомерная геометрия [Электронный ресурс]:учеб. пособие /ЕфимовН.В., РозендорнЭ.Р., 3-е изд. — Электрон. текстовые дан. - М.: Физматлит, 2004. - 464 с.: ISBN 978-5-9221-0386-5http://znanium.com/bookread2.php?book=544609

5.2 Материально-техническое и программное обеспечение дисциплины.

Учебные занятия по дисциплине проводятся в учебных аудиториях КГПИ ФГБОУ ВО «КемГУ»:

404 Учебная аудитория для проведения:	Учебный
- занятий лекционного типа;	
- групповых и индивидуальных консультаций;	корпус №4.
- текущего контроля и промежуточной аттестации.	65.4070
Специализированная (учебная) мебель: доска меловая, кафедра, столы, стулья.	654079,
Оборудование: переносное - ноутбук, экран, проектор.	Кемеровская
Используемое программное обеспечение: MSWindows (MicrosoftImaginePremium 3 year	область, г
по сублицензионному договору № 1212/КМР от 12.12.2018 г. до 12.12.2021 г.), LibreOffice	Новокузнецк,
(свободно распространяемое ПО), Яндекс.Браузер (отечественное свободно	пр-кт
распространяемое ПО).	^
Интернет с обеспечением доступа в ЭИОС.	Металлургов, д
	19
603 Учебная аудитория для проведения:	Учебный
- занятий лекционного типа;	корпус №4.
- занятий семинарского (практического) типа;	Kopnye №4.
- групповых и индивидуальных консультаций;	654079,
- текущего контроля и промежуточной аттестации.	1
Специализированная (учебная) мебель: доска меловая, столы, стулья.	Кемеровская
Оборудование для презентации учебного материала: переносное - ноутбук, экран,	область, г
проектор.	Новокузнецк,
Используемое программное обеспечение: MSWindows (MicrosoftImaginePremium 3 year	HD ICT
по сублицензионному договору № 1212/КМР от 12.12.2018 г. до 12.12.2021 г.), LibreOffice	-
(свободно распространяемое ПО), Mpich 2 (свободно распространяемое ПО), FoxitReader	
(свободно распространяемое ПО), Firefox 14 (свободно распространяемое ПО), QGIS	19
(свободно распространяемое ПО), UML-диаграммы (бесплатная версия).	
Интернет с обеспечением доступа в ЭИОС.	TT 6 11
604 Учебная аудитория для проведения:	Учебный
- занятий лекционного типа;	корпус №4.
- занятий семинарского (практического) типа;- групповых и индивидуальных консультаций;	
- групповых и индивидуальных консультации; - текущего контроля и промежуточной аттестации.	654079,
- текущего контроля и промежуточной аттестации. Специализированная (учебная) мебель: доска меловая, столы, стулья.	Кемеровская
Специализированная (учеоная) мессль. доска меловая, столы, стулья. Оборудование для презентации учебного материала: переносное - ноутбук, экран,	•
проектор.	
Используемое программное обеспечение : MSWindows (MicrosoftImaginePremium 3 year	Новокузнецк,
по сублицензионному договору № 1212/КМР от 12.12.2018 г. до 12.12.2021 г.), LibreOffice	пр-кт
(свободно распространяемое ПО), FoxitReader (свободно распространяемое ПО), Firefox 14	Металлургов, д
(свободно распространяемое ПО), Яндекс.Браузер (отечественное свободно	19
распространяемое ПО).	
Интернет с обеспечением доступа в ЭИОС.	

5.3 Современные профессиональные базы данных и информационные справочные системы.

Перечень СПБД и ИСС по дисциплине

1. Общероссийский математический портал (информационная система) - http://www.mathnet.ru/

6 Иные сведения и (или) материалы.

6.1.Примерные темы письменных учебных работ

6.1.1. Индивидуальное задание по теме «Матричная алгебра»

1. Вычислить определитель:

$$\begin{vmatrix}
-2 & -5 & -1 & 3 \\
2 & -5 & 9 & 1 \\
3 & -1 & 5 & -5 \\
2 & 18 & -7 & -10
\end{vmatrix}$$

2. Доказать тождество:

$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (b-a)(c-a)(c-b).$$

3. Найти значение многочлена f(x) от матрицы A:

$$f(x) = 3x^2 - 2x + 5,$$
 $A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & -4 & 1 \\ 3 & -5 & 2 \end{pmatrix}.$

4. Решить матричное уравнение. Сделать проверку.

$$\begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix} \cdot X = \begin{pmatrix} -1 & 3 & 0 \\ 1 & 2 & -1 \end{pmatrix}$$

5. Найти ранг матрицы А

$$A = \begin{pmatrix} 5 & -1 & 4 & 2 & 1 \\ -1 & 2 & 1 & 5 & 6 \\ 3 & -5 & 2 & -8 & -11 \\ 2 & 4 & 2 & 10 & 12 \end{pmatrix}$$

6.1.2. Контрольная работа по теме «Системы линейных уравнений»

- 1. Решить систему линейных уравнений: методом Гаусса.
- а) методом Крамера; проверку.
- б) методом Гаусса;
- в) при помощи обратной матрицы.

$$\begin{cases} 3X_1 + 2X_2 + X_3 = 5, \\ 2X_1 + 3X_2 + X_3 = 1, \\ 2X_1 + X_2 + 3X_3 = 11. \end{cases}$$

2. Решить систему линейных уравнений

Найти общее решение, частное, сделать

$$\begin{cases} 2X_{1} - X_{2} + 3X_{3} - X_{4} + X_{5} = 3\\ 3X_{1} + 4X_{2} - X_{3} + 4X_{4} = 2\\ X_{1} + 5X_{2} - 4X_{3} + 5X_{4} - X_{5} = -1\\ 4X_{1} + 9X_{2} - 5X_{3} + 9X_{4} - X_{5} = 1 \end{cases}$$

6.1.3. Кейс-задание по теме «Системы линейных уравнений»

Автозавод известного бренда производит 4 вида легковых автомобилей закрытого типа: седан, лимузин, универсал и купе. При этом используются материалы четырех типов: М1, М2, М3, М4. Нормы расхода каждого из них на один вид автомобиля и объем расхода материала на 1 день заданы таблицей (см. таблицу). Найти ежедневный объем выпуска каждого вида автомобиля.

	Нормы ра	Расход			
Вид		ИЗМ	ſ .		материала
материала	2277277		******		на 1 день,
	седан	универсал	купе	лимузин	ед. изм.
M1	2	3	1	4	1120
M2	2	1	5	2	1360
M3	1	2	3	1	980
M4	2	3	1	1	1030

6.1.4. Контрольная работа по темам: «Векторная алгебра», «Аналитическая геометрия в пространстве»

Даны координаты вершин пирамиды $A_1(4, 2, 5)$, $A_2(0, 7, 2)$, $A_3(0, 2, 7)$, $A_4(1, 5, 0)$. Найти: а) длину ребра A_1A_2 ; б) площадь грани $A_1A_2A_3$; в) объём пирамиды; г) уравнение плоскости $A_1A_2A_3$; д) угол между ребром A_1A_4 и гранью $A_1A_2A_3$; е) уравнение высоты, опущенной из вершины A_4 на грань $A_1A_2A_3$; ж) длину высоты, опущенной из вершины A_4 на грань $A_1A_2A_3$.

6.1.5. Индивидуальное задание по теме «Аналитическая геометрия на плоскости»

- 1. Уравнение одной из сторон квадрата x+3y-5=0. Составить уравнения трех остальных сторон квадрата, если (-1;0) точка пересечения его диагоналей.
- 2. Даны уравнения одной из сторон ромба 2x+y-5=0 и одной из его диагоналей y-1=0. Диагонали ромба пересекаются в точке (3;1). Найти уравнения остальных сторон ромба.
- 3. Уравнения двух сторон параллелограмма x+2y+2=0 и x+y=0, а уравнение одной из его диагоналей x+2=0. Найти координаты вершин параллелограмма.
- 4. Даны две вершины A(-3, 3) и B(5, -1) и точка D(4, 3) пересечения высот треугольника. Составить уравнения его сторон.
- 5. Даны вершины A(1, 1), B(2, 3), C(4, 1) трапеции ABCD (AD | BC). Известно, что диагонали трапеции взаимно перпендикулярны. Найти координаты вершины D этой трапеции.
- 6. Даны уравнения двух сторон треугольника 5x-4y+15=0 и 4x+y-9=0. Его медианы пересекаются в точке (0, 2). Составить уравнение третьей стороны треугольника.

7. Даны две вершины A(2;-2), B(3;-1) и точка P(1;0) пересечения медиан треугольника ABC . Составить уравнение высоты треугольника, проведенной через третью вершину C .

6.1.6. Контрольная работа по теме «Комплексные числа»

- 1. Дано: $z_1=2+i\,,\;\;z_2=-3+2i\,.$ Найти: $z_1+z_2\,,\;z_1\cdot z_2\,,\;z_1/z_2\,.$
- 2. Дано: $z_1=1+i$, $z_2=-1+i$. Найти z_1^5 , $\sqrt[3]{z_2}$.
- 3. Решить уравнение: a) $x^2 + x + 4 = 0$ б) $x^4 6x^2 + 25 = 0$
- 4. Построить на комплексной плоскости множество точек z, удовлетворяющих условиям: Re $z \le 2$; $|\text{Im}z| \le 1$

6.1.7. Контрольная работа по теме «Линейные пространства»

- 1. Показать, что векторы a = (2,3,4) b = (2,1,5) c = (-1,0,1) образуют базис и найти координаты вектора d = (3,-4,2) в этом базисе.
- 2. В базисе e_1 , e_2 , e_3 задан вектор x = (2,3,4). Найти координаты этого вектора в базисе e_1^* , e_2^* , e_3^*

, если
$$\begin{cases} e_1 - 2e_2 + 3e_3 = e_1^* \,, \\ 2e_1 + 3e_2 - 4e_3 = e_2^* \,, \\ 3e_1 - 2e_2 - 5e_3 = e_3^* \,. \end{cases}$$

3. В евклидовом пространстве R⁴ подпространство L задано системой уравнений

$$\begin{cases} X_1 + 3X_2 - X_3 + X_4 = 0, \\ 2X_1 + X_2 - 3X_3 = 0, \\ 3X_1 + 4X_2 - 4X_3 + X_4 = 0. \end{cases}$$

Найти ортогональный базис в L.

6.1.8. Коллоквиум

- 1. Является ли линейным пространством множество, всех:
 - матриц размера тхп;
 - диагональных матриц порядка n;
 - невырожденных матриц.
- 2. Являются ли векторы $\vec{a}_1 = (5;4;3)$, $\vec{a}_2 = (3;3;2)$, $\vec{a}_3 = (8;1;3)$ линейно зависимыми?
- 3. Показать, что система векторов $\vec{e}_1 = (1;2;3)$ $e_2 = (3;0;2)$ $\vec{e}_3 = (-2;1;1)$ образует базис в $\vec{c}_3 = (4;2;-1)$ в этом базисе.

4.
$$\begin{cases} x_1 - 2x_2 + 3x_3 + x_4 = 0, \\ 2x_1 + 3x_2 - 4x_3 + 3x_4 = 0, \\ 3x_1 + x_2 - x_3 + 4x_4 = 0 \end{cases}$$

Множество решений однородной системы образует линейное пространство. Найти размерность этого пространства и какой-нибудь базис в нем.

5. Дана матрица
$$A = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 4 & 1 \\ -1 & 2 & 3 \end{pmatrix}$$
 перехода от базиса (e_1, e_2, e_3) к базису (c_1, c_2, c_3) . Найти

координаты векторов e_1, e_2, e_3 в базисе c_1, c_2, c_3 .

- 6. Является ли линейным подпространством в пространстве матриц порядка п подмножество, образованное всеми:
 - матрицами с нулевой первой строкой;
 - нижнетреугольными матрицами;
 - невырожденными матрицами.
- 7. Подпространства $L_1=L(a_1,a_2,a_3),\ L_2=L(b_1,b_2,b_3)$ натянуты на следующие системы векторов: $\vec{a}_1=(1;2;1),\ \vec{a}_2=(1;1;-1),\ \vec{a}_3=(1;3;3),$ $\vec{b}_1=(2;3;-1),\ \vec{b}_2=(1;2;2),\ \vec{b}_3=(1;1;-3).$ Найти базисы и размерности подпространств $L_1,\ L_2,\ L_1+L_2$.
- 8. Найти базис линейной оболочки системы векторов: $\vec{e}_1 = (1;0;0;-1)$, $\vec{e}_2 = (2;1;1;0)$, $\vec{e}_3 = (1;1;1;1)$, $\vec{e}_4 = (1;2;3;4)$, $\vec{e}_5 = (0;1;2;3)$.
- 9. Векторы $\overrightarrow{e}_1, e_2, e_3$ образуют ортогональный базис. Найти скалярное произведение векторов $\overrightarrow{x}=2e_1-3e_2+4e_3$ и $\overrightarrow{y}=e_1+e_2-5e_3$ и их длины, если $\left|e_1\right|=1, \ \left|e_2\right|=2,$ $\left|e_3\right|=2$.
- 10. Для каких векторов неравенство Коши-Буняковского превращается в равенство?
- 11. В евклидовом арифметическом пространстве R^4 найти угол между векторами $\vec{a} = (2;1;1;0)$ $\vec{a} = (1;2;3;4)$.
- 12-14. В евклидовом пространстве R^4 подпространство V задано системой уравнений $\begin{cases} x_1-2x_2+3x_3+x_4=0,\\ 2x_1+3x_2-4x_3+3x_4=0\\ 3x_1+x_2-x_3+4x_4=0 \end{cases}$

Найти по одному ортогональному базису в пространствах V, его ортогональном дополнении W и $\,R^4\,$.

13

- 15. Является ли оператор A(x)= $(x_1 x_2; 2x_1 + x_3; x_2 2x_3)$ линейным, если вектор $\vec{x} = (x_1; x_2; x_3)$?
- 16-17. Линейный оператор задан матрицей $A = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 4 & 1 \\ 1 & 2 & 3 \end{pmatrix}$ в некотором базисе. Найти

базис ядра и дефект линейного оператора.

18. Найти (в том же базисе) координаты вектора у=А(х), если оператор задан матрицей А=

$$\begin{pmatrix} 1 & 1 & 3 \\ 0 & 4 & 1 \\ -1 & 2 & 3 \end{pmatrix} \mathbf{H} \ \vec{x} \ = 2 e_1 + e_2 - e_3 \, .$$

19-20. Матрица линейного оператора в базисе (e_1, e_2, e_3) имеет вид $A = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 4 & 1 \\ 1 & 2 & 3 \end{bmatrix}$. Найти

матрицу этого оператора в базисе (c_1, c_2, c_3) , если

$$\vec{c_1} = 2e_1 + e_2 - e_3$$
, $\vec{c_2} = e_1 + 3e_2 + e_3$, $\vec{c_3} = e_1 - 2e_2 + 3e_3$.

6.1.9. Контрольная работа по теме «Линейные операторы. Квадратичные формы»

1. Найти матрицу A^* линейного оператора в базисе e_1^* , e_2^* , заданного матрицей A в базисе

$$A = \begin{pmatrix} -3 & 1 \\ 2 & -1 \end{pmatrix}, e_1^* = e_2 \\ e_2^* = e_1 + e_2$$

 $A = \begin{pmatrix} -3 & 1 \\ 2 & -1 \end{pmatrix}, \quad e_1^* = e_2$ 2. Линейный оператор задан матрицей $A = \begin{pmatrix} 1 & 2 & -1 \\ -2 & 4 & 5 \\ -1 & 6 & 4 \end{pmatrix}$ в базисе e_1, e_2, e_3 .

Найти базис ядра и дефект линейного оператора.

3. Найти собственные значения и собственные векторы линейного оператора, заданного матрицей A в базисе e_1 , e_2 , e_3 .

$$A = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}.$$

- 4. Привести к диагональному виду матрицу $A = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}$.
- 5. Дана квадратичная форма $L(x_1, x_2, x_3) = x_1^2 5x_2^2 + 8x_3^2 + 3x_1x_2 2x_1x_3 + 8x_2x_3$ Записать ее в матричном виде.
- 6. Привести квадратичную форму к каноническому виду. $L(x_1, x_2, x_3) = x_1^2 + x_1x_2 + 4x_2x_3$.

14

7. Исследовать на знакоопределенность квадратичную форму $L(x_1,x_2,x_3)=x_1^2+4x_2^2+x_3^2+2x_1x_2\,.$

6.2. Примерные вопросы и задания / задачи для промежуточной аттестации

Таблица 6 - Примерные теоретические вопросы и практические задания к экзамену

Семестр 1

Разделы и темы	Примерные	Примерные практические задания
	теоретические вопросы	
1. Матричная алгебра		
1.1 Матрицы, операции над матрицами	Матрицы, виды матриц Операции над матрицами.	1. Найти матрицу Д=ABC-3E, где A= $\begin{pmatrix} 1 & 2 & -3 \\ 1 & 0 & 2 \\ 4 & 5 & 3 \end{pmatrix}, B= \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, C=(2\ 0\ 5), E-$ единичная матрица. 2. Найти значение многочлена $f(x)$ от матрицы A: $f(x) = 3x^2 - 2x + 5$, $A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & -4 & 1 \\ 3 & -5 & 2 \end{pmatrix}.$
1.2.Определители, их свойства. Миноры и алгебраические дополнения. Разложение определителя по элементам ряда	 Свойства определителей. Вычисление определителей. 	3. Вычислить определитель матрицы А $A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & -4 & 1 \\ 3 & -5 & 2 \end{pmatrix}$ 4. Вычислить определитель: $\begin{vmatrix} -2 & -5 & -1 & 3 \\ 2 & -5 & 9 & 1 \\ 3 & -1 & 5 & -5 \\ 2 & 18 & -7 & -10 \end{vmatrix}$
1.3. Обратная матрица. Ранг матрицы	 5 Обратная матрица. Теорема о существовании обратной матрицы. 6 Элементарные преобразования матрицы. Ранг матрицы, его вычисление. 	5. Найти матрицу $B=11.(A-1)/+A/$, $A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & -4 & 1 \\ 3 & -5 & 2 \end{pmatrix}$ 6. Найти ранг матрицы A : $\begin{pmatrix} 1 & 3 & -2 & 0 \\ 3 & -1 & 5 & 4 \\ 2 & -4 & 7 & 4 \\ 3 & -1 & 5 & 4 \end{pmatrix}$

2. Системы линейных		
2.1. Решение систем п линейных алгебраических уравнений с п неизвестными методом Крамера.	7 Системы линейных алгебраических уравнений. 8 Решение систем линейных уравнений методом Крамера.	7. Решить систему линейных уравнений $ \begin{cases} X_1 + X_2 + 2X_3 = -1, \\ X_1 - X_2 + 2X_3 = -4, \\ 2X_1 - X_2 + 2X_3 = -4, \\ 4X_1 + X_2 + 4X_3 = -2. \end{cases} $ 8. $ \begin{cases} X_1 - 2X_2 + 3X_3 = 6, \\ 2X_1 + 3X_2 - 4X_3 = 20, \\ 3X_1 - 2X_2 - 5X_3 = 6. \end{cases} $
2. 2. Решение систем линейных алгебраических уравнений и матричных уравнений с помощью обратной матрицы.	9 Решение систем линейных уравнений с помощью обратной матрицы. 10 Решение матричных уравнений	9. Решить систему линейных уравнений с помощью обратной матрицы. $\begin{cases} X_1 - 2X_2 + 3X_3 = 6, \\ 2X_1 + 3X_2 - 4X_3 = 20, \\ 3X_1 - 2X_2 - 5X_3 = 6. \end{cases}$ 10. Решить матричное уравнение. Сделать $\begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix} \cdot X = \begin{pmatrix} -1 & 3 & 0 \\ 1 & 2 & -1 \end{pmatrix}$
2.3. Теорема Кронекера-Капелли.	11 Исследование систем линейных уравнений.12 Теорема Кронекера-Капелли.	проверку.
2.4. Решение систем тинейных алгебраических уравнений с п неизвестными методом Гаусса.	 13 Решение систем линейных уравнений методом Гаусса. 14 Однородные системы линейных уравнений. 	13. Решить систему методом Гаусса, найти общее решение. частное, сделать проверку. $\begin{cases} X_1 + 2X_2 - 3X_3 + X_4 - 3X_5 = 2, \\ 2X_1 - X_2 + X_3 - 4X_4 + X_5 = 1, \\ 3X_1 + X_2 - 2X_3 - 3X_4 - 2X_5 = 3. \end{cases}$ 14. Найти ФНР однородной системы. $\begin{cases} X_1 + 3X_2 - X_3 + X_4 = 0, \\ 2X_1 + X_2 - 3X_3 = 0, \\ 3X_1 + 4X_2 - 4X_3 + X_4 = 0. \end{cases}$
3. Векторная алгебра (3.1. Векторы на плоскости и в пространстве. Линейные операции над векторами.	геометрические векторы) 15 Линейные операции над векторами. 16 Ортогональная проекция вектора на ось. Свойства проекции.	15. Векторы \vec{a} и \vec{e} образуют угол $\varphi = 120^{\circ}$, причем $ a = 3$ и $ b = 5$ Найти $ a+b $ и $ a-b $. 16. Найти $np_{\vec{c}}(2\vec{a}+3\vec{b})$, если $\vec{a}=(1;2;-4)$, $\vec{e}=(5;3;2)$, $\vec{c}=(-3;2;1)$.
3.2. Скалярное произведение векторов, его основные свойства,	17 Разложение вектора по базису. Направляющие косинусы. Операции	17. Выяснить, образуют ли векторы $\vec{a}_1 = (1;2;0), \vec{a}_2 = (3;-1;1), \vec{a}_3 = (0;1;1)$ базис в R^3 .

координатное выражение.	над векторами в координатной форме. 18 Скалярное произведение векторов, его свойства и приложения.	18. Найти угол ВСА в треугольнике АВС, если A(1;3;2), B(3;4;2), C(2;5;1).
3. 3. Векторное и смешанное произведение векторов, их основные свойства, приложения	 19 Векторное произведение векторов, его свойства и приложения. 20 Смешанное произведение векторов, его свойства и приложения. 	19. Найти площадь треугольника ABC, если A(1;3;2), B(3;4;2), C(2;5;1). 20. Найти объем пирамиды A ₁ A ₂ A ₃ A ₄ , если A ₁ (3;5;4), A ₂ (8;7;4), A ₃ (5;10;4), A ₄ (4;7;8).
4. Аналитическая геом	етрия на плоскости	
4.1. Система координат на плоскости. Основные задачи.	 21 Прямоугольная и полярная системы координат на плоскости. 22 Деление отрезка в данном отношении. 	 21. Найти координаты точек в полярной системе координат.
4.2. Прямая на плоскости. Способы задания.	 23 Уравнение прямой с угловым коэффициентом, общее уравнение прямой, проходящей через одну и две заданные точки. 24 Уравнение прямой в отрезках на осях, нормальное уравнение прямой, полярное уравнение прямой. 	 23. Написать уравнения прямых, проходящих через начало координат под углом 45° к прямой y = 4 - 2x. 24. Уравнение одной из сторон квадрата X + 3Y - 5 = 0 . Составить уравнения трех остальных сторон квадрата, если (-1, 0) - точка пересечения его диагоналей.
4.3.Угол между двумя прямыми. Расстояние от точки до прямой.	 25 Угол между двумя прямыми на плоскости. Условие параллельности и перпендикулярности двух прямых. 26 Взаимное расположение прямых на плоскости. Расстояние от точки до прямой. 	25. Среди прямых найти параллельные и перпендикулярные. а) x-2y+3=0; б) -2x+4y+5=0; в) -2x+y-3=0; г) -2x+4y-6=0. 26. Показать, что прямые 3x+y-2=0 и 6x+2y+1=0 параллельны и найти расстояние между ними.

4.4. Линии второго порядка.	 27 Исследование формы эллипса по его уравнению. 28 Исследование формы гиперболы по ее уравнению. 29 Каноническое уравнение параболы (вывод и исследование). 	 27. На прямой x+5=0 найти точку, одинаково удаленную от левого фокуса и верхней вершины эллипса x²/20 + y²/4 = 1 28. Через точку М(0;-1) и правую вершину гиперболы 3x²-4y²=12 проведена прямая. Найти вторую точку пересечения прямой с гиперболой. 29. Написать уравнение окружности, имеющей центр в фокусе параболы y² = 4x и касающейся ее директрисы. Найти точки пересечения параболы и окружности.
5. Аналитическая геом	етрия в пространстве	
5.1. Плоскость. Различные уравнения плоскости. Угол между плоскостями. Условие параллельности и перпендикулярности двух плоскостей.	 30 Общее уравнение плоскости. Уравнения плоскости, проходящей через одну и три заданные точки. Уравнение плоскости в отрезках на осях. 31 Угол между плоскостями. Условие параллельности и перпендикулярности двух плоскостей. Расстояние от точки до плоскости. 	30. Найти уравнение плоскости, проходящей через начало координат и через точки Р(4;-2;1) и Q(2;4;-3). 31. Написать уравнение плоскости, проходящей через точку М(2;2;-2) и параллельной плоскости х-2у-3z=0 32. Найти угол между плоскостями х-2у-3z=0 и 2х-4у+5z-1=0
5.2. Прямая в пространстве. Способы задания. Условие параллельности и перпендикулярности прямых.	32 Общие уравнения прямой линии в пространстве. Векторное, параметрические и канонические уравнения прямой. 33 Угол между двумя прямыми в пространстве. Условие параллельности и перпендикулярности прямых.	33. Уравнения прямой $\begin{cases} 2x+y+8z-16=0\\ x-2y-z+2=0 \end{cases}$ написать в канонической форме. $\begin{cases} y+2z-1=0\\ x-2z+1=0 \end{cases}$ прямой, проходящей через начало координат и через точку $M(2;2;-2)$.
5.3.Взаимное расположение прямой и плоскости в пространстве.	34 Расстояние от точки до прямой в пространстве. 35 Угол между прямой и плоскостью. Взаимное расположение прямой и плоскости в пространстве.	35. Найти расстояние между параллельными прямыми. $\frac{x}{1} = \frac{y-3}{2} = \frac{z-2}{1} \qquad ;$ $\frac{x-3}{1} = \frac{y+1}{2} = \frac{z-2}{1}$ 36. Найти угол прямой $\begin{cases} y+2z-1=0 \\ x-2z+1=0 \end{cases}$ с плоскостью x-2y-3z+3=0

5.4. Поверхности второго порядка	 36 Поверхности второго порядка. Эллипсоиды, гиперболоиды. 37 Поверхности второго порядка. Параболоиды, конусы. 	 37. Составить уравнение сферы, если точки M(4;-1;-3) и N(0;3;-1) являются концами одного из ее диаметров. 38. Определить вид поверхности x² - 2x + y² - 4y - 2z = 0

Семестр 2		
Разделы и темы 1. Комплексные чис	Примерные теоретические вопросы	Примерные практические задания
1.1. Определение комплексного числа. Комплексная плоскость. Форма записи комплексных чисел.	Определение комплексного числа. Геометрическое изображение комплексных чисел. Формы записи комплексных чисел.	1. Дано: $z_1=2+i$, $z_2=-3+2i$. Найти: z_1+z_2 , $z_1\cdot z_2$, z_1/z_2 . 2. Дано: $z_1=1+i$, $z_2=-1+i$. Найти z_1^5 , $\sqrt[3]{z_2}$.
1.2. Операции над комплексными числами.	 Действия над комплексными числами в алгебраической форме записи. Действия над комплексными числами в тригонометрической форме записи. 	3. Даны два комплексных числа $z_1 = 1 - \frac{7}{2}i; z_2 = -7 - 2i . \text{Найти значение}$ выражения $\left(\frac{1 - \frac{7}{2}i}{-7 - 2i}\right)^{-4}$ в алгебраической форме, $4. \ \text{Для} \text{числа} z = 2 - 2\sqrt{3}i \text{найти}$ тригонометрическую форму, найти z^{20} , найти корни уравнения $w^3 + z = 0$.
2.1. Линейные простр 2.1. Линейные векторные пространства. Линейная зависимость векторов.	Б. Линейные пространства. Определение, примеры. Олинейная зависимость и независимость векторов.	 5. Является ли линейным пространством множество, всех: матриц размера mxn; диагональных матриц порядка n; невырожденных матриц. 6. Являются ли векторы
2.2. Размерность и базис векторного пространства.	7. Базис и размерность линейного пространства.8. Разложение вектора по базису	7. Показать, что система векторов $\vec{e}_1 = (1;2;3)$ $\vec{e}_2 = (3;0;2)$ $\vec{e}_3 = (-2;1;1)$ образует базис в

		R^3 и найти координаты вектора $c = (4;2;-1)$ в этом базисе. 8. Множество решений однородной системы $\begin{cases} x_1 - 2x_2 + 3x_3 + x_4 = 0, \\ 2x_1 + 3x_2 - 4x_3 + 3x_4 = 0 \text{ образует} \\ 3x_1 + x_2 - x_3 + 4x_4 = 0 \end{cases}$ линейное пространство. Найти размерность этого пространства и какой-нибудь базис в нем.
2.3. Переход к новому базису.	9. Переход к новому базису.	9. Дана матрица $A = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 4 & 1 \\ -1 & 2 & 3 \end{pmatrix}$ перехода от базиса (e_1, e_2, e_3) к базису (c_1, c_2, c_3) . Найти координаты векторов e_1, e_2, e_3 в базисе c_1, c_2, c_3 . 10. В базисе e_1, e_2, e_3 задан вектор $x = (2,3,4)$. Найти координаты этого вектора в базисе e_1, e_2, e_3 если $\begin{cases} e_1 - 2e_2 + 3e_3 = e_1^*, \\ 2e_1 + 3e_2 - 4e_3 = e_2^*, \\ 3e_1 - 2e_2 - 5e_3 = e_3^*. \end{cases}$
2.4. Линейные подпространства. Сумма и пересечение линейных подпространств. Линейная оболочка и ее свойства.	 10 Линейные подпространства. Определение, примеры. 11 Пересечение и сумма линейных подпространств. 12 Линейная оболочка и ее свойства. 	11. Является ли линейным подпространством в пространстве матриц порядка п подмножество, образованное всеми: - матрицами с нулевой первой строкой; - нижнетреугольными матрицами; - невырожденными матрицами. 12. Подпространства $L_1 = L(a_1, a_2, a_3)$, $L_2 = L(b_1, b_2, b_3)$ натянуты на следующие системы векторов: $\vec{a}_1 = (1;2;1)$, $\vec{a}_2 = (1;1;-1)$, $\vec{a}_3 = (1;3;3)$, $\vec{b}_1 = (2;3;-1)$, $\vec{b}_2 = (1;2;2)$, $\vec{b}_3 = (1;1;-3)$. Найти базисы и подпространств L_1 , L_2 , $L_1 + L_2$. 13. Найти базис линейной оболочки системы векторов: $\vec{e}_1 = (1;0;0;-1)$, $\vec{e}_2 = (2;1;1;0)$, $\vec{e}_3 = (1;1;1;1)$, $\vec{e}_4 = (1;2;3;4)$, $\vec{e}_5 = (0;1;2;3)$.
2.5. Евклидовы пространства.	13 Евклидовы пространства. 14 Свойства нормы вектора. Угол между векторами.	14. Векторы e_1, e_2, e_3 образуют ортогональный базис. Найти скалярное произведение векторов $\vec{x} = 2e_1 - 3e_2 + 4e_3$ и

<u> </u>		
2.6. Ортонормированная система векторов. Ортогональное дополнение	 15 Ортогональные и ортонормированные базисы. 16 Ортогональное дополнение. 17 Процесс ортогонализации Грама-Шмидта. 	$\overrightarrow{y}=e_1+e_2-5e_3$ и их длины, если $ e_1 =1, e_2 =2, e_3 =2.$ 15. Для каких векторов неравенство Коши-Буняковского превращается в равенство? 16. В евклидовом арифметическом пространстве R^4 найти угол между векторами $\overrightarrow{a}=(2;1;1;0)$ и $\overrightarrow{b}=(1;2;3;4)$ 17. В евклидовом пространстве R^4 подпространство V задано системой уравнений .
3. Линейные опе	раторы	i i
3.1. Линейные операторы и их свойства.	 18 Линейные операторы. Определение, примеры. 19 Ядро, образ, дефект, ранг линейного оператора. 	18. Является ли оператор $A(x) = (x_1 - x_2; 2x_1 + x_3; x_2 - 2x_3)$ линейным, если вектор $\vec{x} = (x_1; x_2; x_3)$? 19. Линейный оператор задан матрицей $A = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 4 & 1 \\ -1 & 2 & 3 \end{pmatrix}$ в некотором базисе. Найти базис ядра и дефект линейного оператора.
3.2. Матрицы оператора в разных базисах. Определитель оператора в разных базисах.	 20 Матрица линейного оператора. 21 Матрицы линейного оператора в разных базисах. 	20. Найти (в том же базисе) координаты вектора $y=A(x)$, если оператор задан матрицей $A=\begin{pmatrix} 1 & 1 & 3 \\ 0 & 4 & 1 \\ -1 & 2 & 3 \end{pmatrix}$ и $x=2e_1+e_2-e_3$. 21. Матрица линейного оператора в базисе (e_1,e_2,e_3) имеет вид $A=\begin{pmatrix} 1 & 1 & 3 \\ 0 & 4 & 1 \\ -1 & 2 & 3 \end{pmatrix}$. Найти матрицу этого оператора в базисе (c_1,c_2,c_3) , если $\overrightarrow{c_1}=2e_1+e_2-e_3$, $\overrightarrow{c_2}=e_1+3e_2+e_3$, $\overrightarrow{c_3}=e_1-2e_2+3e_3$.
3.3. Преобразование матрицы линейного оператора.	22 Преобразование матрицы линейного оператора.	22. Задано линейное преобразование A, переводящее вектор \bar{x} в вектор \bar{y} и линейное преобразование B, переводящее вектор \bar{y} в вектор \bar{z} . Найти матрицу линейного преобразования, переводящего вектор \bar{x} в вектор \bar{z} .

3.4. Собственные векторы и собственные значения линейного оператора.	 22 Собственные значения и собственные векторы линейного оператора. 23 Вычисление собственных значений и собственных векторов линейного оператора. 	$\begin{cases} y_1 = 2x_1 - x_2 + 5x_3 \\ y_2 = x_1 + 4x_2 - x_3 \\ y_3 = 3x_1 - 5x_2 + 2x_3 \end{cases} \begin{cases} z_1 = y_1 + 4y_2 + 3y_3 \\ z_2 = 5y_1 - y_2 - y_3 \\ z_3 = 3y_1 + 6y_2 + 7y_3 \end{cases}$ $x \xrightarrow{A} y \xrightarrow{B} z$ $x \xrightarrow{C} z$ $23. \text{ Найти собственные значения и собственные векторы линейного оператора, заданного матрицей}.$ $1) \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}; 2) \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$ $24. \text{ Пусть линейный оператор, действующий в пмерном пространстве, имеет в некотором базисе матрицу \overline{A}. \overline{A}, \overline{A}, \overline{A}, \overline{A},, \overline{A},, \overline{A} — собственные значения этого оператора. Найти собственные значения и собственные векторы линейного оператора, матрицей которого в том$
3.5.Приведение матрицы линейного оператора к диагональному виду	 23 Приведение матрицы к диагональному виду. 24 Приведение симметрической матрицы к диагональному виду. 	же базисе является \overline{A}^n . 25. Привести к диагональному виду матрицу $A = \begin{pmatrix} 5 & 4 \\ 2 & 3 \end{pmatrix}$ 26. Привести к диагональному виду матрицу $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}.$
4.1. Квадратичные фо 4.1. Квадратичные формы. Приведение квадратичной формы к каноническому виду. 4.2. Критерий Сильвестра	 25 Определение квадратичной формы. 26 Преобразование квадратичных форм. 27 Квадратичные формы канонического вида. 28 Знакоопределенность квадратичных форм. 29 Критерий Сильвестра. 	27. Привести квадратичную форму к каноническому виду. $L(x_1,x_2,x_3)=x_1^2+2x_1x_2+2x_2x_3$ 28. Привести квадратичную форму к каноническому виду методом Лагранжа $f(x_1,x_2,x_3)=2x_1^2+2x_2^2+x_3^2+2x_1x_2+2x_2x_3,$ $g(x_1,x_2,x_3)=2x_1^2+\frac{1}{2}x_2^2-\frac{4}{3}\sqrt{2}x_3^2+2x_1x_2-2\sqrt{2}x_2x_3.$ 29. Исследовать на знакоопределенность квадратичную форму: a) $L(x_1,x_2,x_3)=x_1^2+4x_2^2+3x_3^2+2x_1x_2+2x_2x_3$ b) $L(x_1,x_2,x_3)=x_1^2-2x_2^2-2x_3^2-x_1x_2+2x_2x_3$ B) $L(x_1,x_2,x_3)=3x_1^2+3x_3^2+4x_1x_2-2x_2x_3$.
Компетенции ОПК-1. Способен применять фундаментальные знания, полученные в области математических и (или) естественных	осветительные установи вершинах этого квадрата освещенность на поверх	ощем форму квадрата со стороной a , установлены две ки A и B, расположенные в противоположных а. Устройство этих установок таково, что наилучшая хности парка достигается в таких точках M, для условие: $ MA ^2 = 3 MB ^2$. Через все такие точки

проложили пешеходную дорожку. В местах пересечения этой дорожки со

наук, и

использовать их в

профессиональной	
деятельности	

сторонами квадрата расположены входы в парк. Пусть сторона квадрата равна $a = 36(\sqrt{5} + 1)$ м.

Задание:

- 1. Вывести уравнение линии, которой принадлежат все точки пешеходной дорожки.
- 2. Найти расстояние от установки B до ближайшего входа в парк.

Задание 2.

Фирма планирует организовать выпуск новой продукции, для чего берет в банке кредит в размере 250 тыс. руб. под 18 % годовых. На организацию производства фирме понадобится 60 дней, после чего она ежедневно будет получать прибыль в размере 7 тыс. руб. Временная база по начислению процентов равна 365 дням.

Задание:

- 1. Вывести формулу размера долга S (тыс. руб.) фирмы банку через t дней.
- 2. Через какое наименьшее количество дней после получения кредита фирма может погасить кредит разовым платежом за счет полученной прибыли?

Составитель (и):

канд. пед. наук Гридчина В.Б.

(фамилия, инициалы и должность преподавателя (ей))