Подписано электронной подписью: Вержицкий Данил Григорьевич Должность: Директор КГПИ КемГУ Дата и время: 2025-04-23 00:00:00 471086fad29a3b30e244c728abc3661ab35c9d50210dcf0e75e03a5b6fdf6436

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «КЕМЕРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кузбасский гуманитарно-педагогический институт

Факультет информатики, математики и экономики

УТВЕРЖДАЮ Декан А.В. Фомина «30» января 2025 г.

Рабочая программа дисциплины

К.М.04.07 Параллельные и распределенные вычислительные системы

Направление подготовки **01.03.02 Прикладная математика и информатика**

Направленность (профиль) подготовки **ИНТЕЛЛЕКТУАЛЬНЫЙ АНАЛИЗ ДАННЫХ**

Программа бакалавриата

Квалификация выпускника бакалавр

> Форма обучения *Очная*

> Год набора 2025

Оглавление

1 Цель дисциплины.	3
Формируемые компетенции, индикаторы достижения компетенций, знания, умения, навыки	3
2 Объём и трудоёмкость дисциплины по видам учебных занятий. Формы промежуточной аттестации.	3
3. Учебно-тематический план и содержание дисциплины	4
3.1 Учебно-тематический план	4
4 Порядок оценивания успеваемости и сформированности компетенций обучающегося в тек и промежуточной аттестации	•
5 Учебно-методическое обеспечение дисциплины	7
5.1 Учебная литература	7
5.2 Программное и информационное обеспечение освоения дисциплины.	7
5.3 Современные профессиональные базы данных и информационные справочные системы	8
6 Иные сведения и (или) материалы	8
6.1.Примерные темы письменных учебных работ	8
6.2. Примерные вопросы и задания / задачи для промежуточной аттестации	12

1 Цель дисциплины.

В результате освоения данной дисциплины у обучающегося должны быть сформированы компетенции основной профессиональной образовательной программы бакалавриата (далее - ОПОП):

ПК-2 Способен к разработке требований, проектированию и реализации программного обеспечения

Формируемые компетенции, индикаторы достижения компетенций, знания, умения, навыки

Таблица 1 – Индикаторы достижения компетенций, формируемые дисциплиной

Код и название	Индикаторы	Знания, умения, навыки (ЗУВ), формируемые
компетенции	достижения	дисциплиной
	компетенции,	
	закрепленные за	
	дисциплиной	
ПК-2 Способен	ПК-2.2	Знать:
разрабатывать	Проектирует	- компоненты программно-технических архитектур
требования,	программное	параллельных вычислительных систем;
проектировать	обеспечение	- виды параллелизма, уровни распараллеливания;
И	ПК-2.3	- модель параллельной программы для вычислительной
реализовывать	Разрабатывает	системы с распределённой памятью;
программное	программное	- основы проектирования, построения и
обеспечение	обеспечение	функционирования распределенных систем.
		Уметь:
		- применять декомпозицию, проектирование
		взаимодействий, укрупнение и планирование
		вычислений при разработке параллельного алгоритма;
		- выявлять информационные зависимости между
		итерациями циклических участков программы;
		- самостоятельно находить алгоритмы решения задач,
		требующихся для проектирования, построения и
		использования распределенных систем, в том числе
		нестандартных и проводить их анализ.
		Владеть:
		- способами преобразования циклов для ликвидации
		информационных зависимостей между итерациями;
		- навыками разработки, компиляции и отладки
		параллельных программ;
		- навыками освоения большого объема информации и
		решения задач распределенных систем.

2 Объём и трудоёмкость дисциплины по видам учебных занятий.

Формы промежуточной аттестации.

Таблица 2 – Объем и трудоемкость дисциплины по видам учебных занятий

	Объём
Общая трудоемкость и виды учебной работы по дисциплине, проводимые в разных	часов по
	формам
формах	обучения
	ОФО
1 Общая трудоемкость дисциплины	108
2 Контактная работа обучающихся с преподавателем (по видам учебных занятий)	24
(всего)	
Аудиторная работа (всего):	24
в том числе:	
лекции	6
лабораторные работы	18
Внеаудиторная работа (всего):	
3 Самостоятельная работа обучающихся (всего)	84
4 Промежуточная аттестация обучающегося – зачет	7 семестр

3. Учебно-тематический план и содержание дисциплины.

3.1 Учебно-тематический план

Таблица 3 - Учебно-тематический план очной формы обучения

№ недели п/п	Разделы и темы дисциплины	Общая трудоёмкость (всего час.)		цоемкос тий (ча		Формы текущего контроля и промежуточной аттестации успеваемости
ыпа	по занятиям		ОФО			
еде				торн. ятия	CPC	
9 H			лекц.	практ.	CrC	
	стр 7		локц.	практ		
	1. Понятие параллельных и					
	распределенных систем					
1	1.1 Определение и особенности	1	1	_		
	распределенных систем				_	
2	1.2 Архитектура параллельных и	7	1	2	4	Опрос №1
2		,	1		4	Onpoe Ner
	распределенных систем					
	2. Параллельное программирование					
3-5	2.1 Параллельные вычисления	10	2	2	6	Индивидуальное
	1					задание №1
4-6	2.2 Технология параллельного	8	-	2		Опрос №2
	программирования систем с общей				6	
	памятью на OpenMP					
6	2.3 Использование графических	6	-	_	6	Опрос №3
Ü	процессоров				0	1
7-9	2.4 Интерфейс передачи сообщений МРІ	8	_	2	6	Опрос №4
1-9	2.4 Интерфейс передачи сообщении WII I					Onpoe Nea
	3. Модели распределенных систем					
7-	3.1 Модель распределенного исполнения	11	1	2	8	Индивидуальное
11						задание №2
9-	3.2 Логическое время	4	-	-	4	
12	1				-	
10-	3.3 Синхронное и асинхронное	4	-	1	3	
13	исполнение				3	
11-	3.4 Модели отказов	5	1	1	2	
14	э. т тодели отказов		-	1	3	
12-	3.5 Глобальное состояние	8		2		Индивидуальное
15	3.3 1 поодпьное состояние	8	_	2	6	задание №3
13	4 Day					эадиние з 123
	4. Распределенные системы					
13	4.1 Коммуникационная подсистема	3	1	-	2	
14-	4.2 Синхронизация	9	1	1	7	Индивидуальное
16	п.2 Спихропизация		•	1	'	задание №4
15	4.2 Dan humaning vi va	2			2	заданно на н
13	4.3 Репликация и консистентность		_	_		
16	4.4 Безопасность	8	-	1	7	Индивидуальное
						задание №5
17	4.5 Системы хранения данных	8	-	1	7	Индивидуальное
						задание №6
18	4.6 Распределенные вычисления	8	-	1	7	
18	Промежуточная аттестация					зачет

п/п	Разделы и темы дисциплины	Общая трудоёмкость (всего час.)	10	цоемкос тий (ча		Формы текущего контроля и промежуточной аттестации успеваемости
ЛИ	по занятиям			ОФО		
недели			Ауди	торн.		
			заня	тия	CPC	
Š			лекц.	практ.		
Семе	стр 7					
	Всего:	108	6	18	84	

4 Порядок оценивания успеваемости и сформированности компетенций обучающегося в текущей и промежуточной аттестации.

Для положительной оценки по результатам освоения дисциплины обучающемуся необходимо выполнить все установленные виды учебной работы. Оценка результатов работы обучающегося в баллах (по видам) приведена в таблице 4.

Таблица 4 - Балльно-рейтинговая оценка результатов учебной работы обучающихся по видам (БРС)

(виды)	•	Виды и результаты	Оценка в аттестации	Баллы
, ,				
T		учебной работы		(17 недель)
Текущая учебная 8	30	Лекционные занятия	2 балла посещение 1 лекционного	0 - 6
работа в семестре		(конспект)	занятия	
(Посещение		(3 занятия)		
занятий по		Практические работы	1 балл - посещение 1 практического	12 - 24
расписанию и		(отчет о выполнении	занятия и выполнение работы на 51-65%	
выполнение		практической работы)	2 балла – посещение 1 занятия и	
заданий)		(12 работ).	существенный вклад на занятии в работу	
			всей группы, самостоятельность и	
			выполнение работы на 85,1-100%	
		Индивидуальные	За одно ИЗ:	
		задания (отчет о	4 балла (выполнено 51 - 65% заданий)	24 - 42
		выполнении	5 баллов (выполнено 66 - 85% заданий)	
		индивидуальных	7 баллов (выполнено 86 - 100% заданий)	
		заданий)		
		(6 работ)		
		Опросы (4 опроса)	1 балла (пороговое значение)	4 - 8
			2 балла (максимальное значение)	
Итого по текущей	работе в	семестре		41 - 80
Промежуточная 2	20	Тест.	5 баллов (пороговое значение)	5 - 10
аттестация (100%		10 баллов (максимальное значение)	
(зачет)	баллов	Решение задачи.	5 баллов (пороговое значение)	5 - 10
Г	триведен		10 баллов (максимальное значение)	
F	ной			
1	шкалы)			
Итого по промежу	точной а	гтестации (зачет)	1	(51 – 100%
- •				по
				приведенной
				шкале)
				10 – 20 б.
		иплине: Сумма бал.	лов текущей и промежуточной аттестации	51 – 100 б.

5 Учебно-методическое обеспечение дисциплины.

5.1 Учебная литература

Основная учебная литература

Малявко, А. А. Параллельное программирование на основе технологий орептр, cuda, opencl, mpi : учебное пособие для вузов / А. А. Малявко. — 3-е изд., испр. и доп. — Москва : Издательство Юрайт, 2023. — 135 с. — (Высшее образование). — ISBN 978-5-534-14116-0. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/514199

Бабичев, С. Л. Распределенные системы: учебное пособие для вузов / С. Л. Дополнительная учебная литература

Кудрина, Е. В. Основы алгоритмизации и программирования на языке С#: учебное пособие для вузов / Е. В. Кудрина, М. В. Огнева. — Москва: Издательство Юрайт, 2023. — 322 с. — (Высшее образование). — ISBN 978-5-534-09796-2. — Текст: электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/517285

Бабичев, *С. Л.* Распределенные системы : учебное пособие для вузов / С. Л. Бабичев, К. А. Коньков. — Москва : Издательство Юрайт, 2023. — 507 с. — (Высшее образование). — ISBN 978-5-534-11380-8. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/518274

5.2 Программное и информационное обеспечение освоения дисциплины.

В обучении используются информационные технологии на базе компьютерных классов учебного корпуса №4 (пр.Металлургов 19):

- лекционные занятия ведутся с использованием презентаций и программного обеспечения мульти-медиа демонстраций на основе MicrosoftOffice 2010 (лицензия DreamSparkPremiumElectronicSoftwareDelivery (3 years);

Renewal по сублицензионному договору №Tr000083174 от 12.04.2016);

- практические занятия по дисциплине проводятся с использованием программного обеспечения, приведенного в таблице.

Учебные занятия по дисциплине проводятся в учебных аудиториях КГПИ КемГУ:

610 Учебная аудитория (мультимедийная) для проведения:	Учебный корпус №4.
- занятий лекционного типа;	
- текущего контроля и промежуточной аттестации.	654079, Кемеровская область,
Специализированная (учебная) мебель: доска меловая, кафедра, столы,	г. Новокузнецк, пр-кт
стулья.	Металлургов, д. 19
Оборудование для презентации учебного материала: стационарное -	31
компьютер, экран, проектор.	
Используемое программное обеспечение: LibreOffice (свободно	
распространяемое ПО), FoxitReader (свободно распространяемое ПО), Firefox	
14 (свободно распространяемое ПО), Яндекс. Браузер (отечественное	
свободно распространяемое ПО).	
Интернет с обеспечением доступа в ЭИОС.	
501 Лаборатория программирования баз данных.	Учебный корпус №4.
Учебная аудитория (мультимедийная) для проведения:	
- занятий лекционного типа;	654079, Кемеровская область,
- занятий семинарского (практического) типа;	г. Новокузнецк, пр-кт
- курсового проектирования (выполнения курсовых работ);	, , ,

- групповых и индивидуальных консультаций;	Металлургов, д. 19
- текущего контроля и промежуточной аттестации.	
Специализированная (учебная) мебель: доска меловая, кафедра, столы	
компьютерные, стулья.	
Оборудование для презентации учебного материала: стационарное -	
компьютер преподавателя, экран, проектор.	
Лабораторное оборудование: стационарное - компьютеры для	
обучающихся (17 шт.).	
Используемое программное обеспечение: LibreOffice (свободно	
распространяемое ПО), FoxitReader (свободно распространяемое ПО), Firefox	
14 (свободно распространяемое ПО), Яндекс.Браузер (отечественное	
свободно распространяемое ПО), Android Studio, PostgreSQL.	
Интернет с обеспечением доступа в ЭИОС.	

5.3 Современные профессиональные базы данных и информационные справочные системы.

Перечень СПБД и ИСС по дисциплине

- 1. CITForum.ru on-line библиотека свободно доступных материалов по информационным технологиям на русском языке http://citforum.ru
- 2. Научная электронная библиотека eLIBRARY.RU крупнейший российский информационный портал в области науки, технологии, медицины и образования, содержащий рефераты и полные тексты www.elibrary.ru

6 Иные сведения и (или) материалы.

6.1.Примерные темы письменных учебных работ

Темы опроса

Опрос №1

Исполнение нескольких распределенных процессов

Клиент-серверная архитектура

Параллельная система

Распределенная система

Классификация параллельных систем

ОКОД

ОКМД

Архитектура МКМД

Опрос №2

- 1. Перечислите составные части технологии ОрепМР.
- 2. С помощью какой директивы (директив) создаются новые параллельные области программы?
 - 3. Что такое критическая секция программы?
- 4. Каким образом можно установить нужное количество потоков для создания очередной параллельной области?
- 5. Как обеспечить выполнение фрагмента параллельной области только главным потоком?
 - 6. Какая опция директивы OpenMP for используется для указания способа

распределения итераций цикла между потоками параллельной области?

- 7. Что такое deadlock? Каким правилам нужно следовать, чтобы избежать возможности попадания параллельной программы в deadlock?
- 8. Что такое сведение данных? Какие опции и в каких директивах используются для выполнения сведения?
 - 9. Что делает директива OpenMP threadprivate?
- 10. Как обеспечить выполнение фрагмента параллельной области потоком с максимальным номером в данной параллельной области?
- 11. Для чего используется опция firstprivate? Чем она отличается от опций private и lastprivate?
- 12. Что такое вложенная параллельная область программы? В каких случаях ее нельзя создать?
- 13. Что такое неявная барьерная синхронизация? С помощью каких средств ее можно отменить?
- 14. Для чего используются директивы OpenMP sections и section? Что делает каждая из этих директив?
 - 15. Перечислите все средства синхронизации потоков в ОрепМР.
- 16. Перечислите возможные способы распределения итераций цикла между потоками.
 - 17. Что делает директива OpenMP atomic?
 - 18. В чем состоит различие между общими и локальными переменными потока?
- 19. С помощью каких средств можно ограничить глубину вложенности параллельных областей программы?
- 20. От чего зависит равномерность загрузки процессоров/ядер системы с общей памятью?
- 21. Каким образом функция, вызываемая из параллельной программы, может выяснить, в последовательной или параллельной области она выполняется?
- 22. Как обеспечить выполнение фрагмента параллельной области в точности одним потоком?
- 23. Какое значение будет иметь переменная count в результате выполнения фрагмента параллельной программы:

```
int count = 0;
#pragma omp parallel for
for(int i = 0; i < 10; i++){
  count++;
}</pre>
```

Опрос №3

- 1. Что такое ядро в терминологии CUDA? 2. Как задается размерность и количество потоков ядра, выполняемого графическим процессором?
 - 3. Перечислите виды и характеристики памяти, доступной из программы GPU.
- 4. Как указать требуемое размещение переменной в памяти GPU (регистровой, разделяемой, глобальной, памяти текстур,...)?
- 5. Перечислите виды и характеристики памяти, доступной из программы CPU при использовании архитектуры CUDA.
 - 6. Перечислите встроенные векторные типы данных расширения языка С и

объясните смысл их наименований.

- 7. Как в программе для СРU обеспечить синхронизацию с программой для GPU?
- 8. Если к одному CPU подключено несколько видеокарт NVidia архитектуры CUDA, то каким образом можно обеспечить их одновременную загрузку?
- 9. Перечислите виды и характеристики памяти GPU, доступной из программы основного процессора.
- 10. Какие ограничения наложены на функции, которые должны выполняться на GPU?
 - 11. Что такое мультипроцессор в терминологии CUDA?
- 12. Какие ограничения наложены на функции, выполняемые в графическом процессоре?
- 13. Как определить версию и технические характеристики графического процессора NVIDIA?
- 14. Перечислите и охарактеризуйте группы библиотечных функций Run-time библиотеки CUDA.
 - 15. Что такое сетка, блок, поток в терминологии CUDA?
 - 16. Что такое тип данных dim3?
 - 17. Какова максимальная размерность сетки в блоках?
- 18. Перечислите и охарактеризуйте функции компонентов программного обеспечения CUDA.
 - 19. Какую модель параллелизма реализует архитектура CUDA?
 - 20. Что делает препроцессор пусс?
- 21. Можно ли получить указатель на функцию, выполняемую графическим процессором?

Опрос №4

- 1. Какие виды виртуальных топологий можно реализовывать с использованием MPI?
- 2. Что такое барьерная синхронизация в MPI? Какие еще виды синхронизации существуют в стандарте MPI-1?
 - 3. Перечислите основные группы функций стандарта MPI-1.
- 4. Может ли MPI-программа, выполняющаяся на многоядерном узле, использовать все его ядра? И если да, то каким образом?
 - 5. Что такое пользовательская операция редукции?
 - 6. Чем различаются размер и протяженность типов данных МРІ?
 - 7. Что такое буферизованная передача сообщений?
- 8. Что такое коммуникатор? Какие проблемы решаются с использованием этого понятия?
- 9. Сколько в MPI операций приема сообщений типа мточка-точка ћ? Перечислите и охарактеризуйте их.
 - 10. Что такое коллективное взаимодействие ветвей программы?
- 11. Как путем вызова одной функции можно одновременно передать и принять блок данных?
 - 12. Перечислите предопределенные операции редукции данных МРІ.
- 13. Что такое виртуальная топология? Как она связана с физической топологией вычислительной сети/кластера/комплекса?

- 14. Для чего в МРІ-программах можно использовать производные типы данных?
- 15. Каково назначение библиотеки МРЕ?
- 16. Что понимается под операциями сдвига и циклического сдвига данных? Какие функции обычно используются для их реализации?
 - 17. Что такое исключающая редукция (MPI Exscan), как она выполняется?
- 18. Может ли ветвь параллельной программы с помощью МРІ передавать сообщения сама себе?
 - 19. Какие операции рассылки и сбора данных реализованы в МРІ?
- 20. Должны ли абсолютно все ветви параллельной программы принимать участие в коллективном взаимодействии?
- 21. Сколько конструкторов производных типов реализовано в МРІ? Перечислите и охарактеризуйте их.
 - 22. Чем различаются топологии мторћ и мрешеткаћ?
 - 23. Что такое вид файла? Для чего используется это понятие?
- 24. Какие способы синхронизации используются при удаленном доступе к памяти?
- 25. Что такое интер-коммуникатор? Чем это понятие отличается от понятия интра-коммуникатора?
 - 26. Что такое файловый тип?
 - 27. Что такое мокноћ при удаленном доступе памяти? Как создать окно?
- 28. Что такое синхронизация с блокировками при удаленном доступе к памяти? Какие еще существуют виды синхронизации?
 - 29. Что такое смещение файла? Чем оно отличается от типового смещения?
- 30. Какие функции могут быть использованы для модификации состояния памяти мокна другой ветви?
 - 31. Перечислите основные группы функций библиотеки МРЕ.
 - 32. Чем различаются индивидуальные и общие указатели файлов?
 - 33. Что такое е-тип? Может ли в качестве е-типа использоваться базовый тип?
 - 34. Что такое заборная синхронизация?
 - 35. Какие типы доступа к файлам существуют в МРІ?
 - 36. С помощью каких функций выполняется создание новых групп ветвей?
 - 37. Что такое синхронизация с пассивным адресатом?
- 38. Что такое доступ к файлу по явному смещению? Являются ли операции такого доступа коллективными?
 - 39. Можно ли изменять вид файла в процессе выполнения программы?

Темы индивидуального задания

Индивидуальное задание №1

Реализовать алгоритмы работы с массивами, используя для циклов блочное, циклическое и блочно-циклическое распределения. При оформлении работы, предоставить блок схемы и код исходного и распараллеленного алгоритмов, сравнение различных подходов к распределению. Указать методы, используемые для преобразования циклов.

Индивидуальное задание №2

Реализовать модель асинхронных распределенных систем на любом языке

программирования, допускающем использование параллельно исполняющихся процедур.

Индивидуальное задание №3

- 1. Покажите, что любое базовое вычисление можно модифицировать так, что оно будет состоять только из событий трех групп, Send, Receive и Internal.
 - 2. Напишите какой-либо алгоритм Announce извещения о завершении вычисления.

Индивидуальное задание №4

Реализуйте распределенный алгоритм взаимоисключения в виде рабочей функции

Индивидуальное задание №5

Спроектировать систему, которая удовлетворяет следующим требованиям:

- не должно быть централизованной базы данных пользователей;
- общие данные делятся на фрагменты фиксированной длины, которые мы будем называть чанками, от английского слова chunk кусок;
- каждый чанк данных может быть доступен тем пользователям, которым владелец разрешил доступ;
- коммуникации между процессами проходят в небезопасной среде. Любой посторонний пользователь может читать все сообщений между процессами;
- каждый чанк может быть сохранен отдельно от других, процесс, создавший чанк может прекратить свое существование.

Индивидуальное задание №6

- 1. Реализуйте простой вариант алгоритма синхронизации больших данных.
- 2. Реализуйте аддитивную хэш-функцию с помощью продвинутого алгоритма.

6.2. Примерные вопросы и задания / задачи для промежуточной аттестации

Семестр 7

Таблица 5 - Примерные теоретические вопросы и практические задания к

зачету

Разделы и темы	Примерные теоретические	Примерные практические задания
Dandani duammani	вопросы	
Разделы дисциплины 1. Понятия папаналичия	a naconnodo a cultura e cuem cu	
1. Понятие параллельных и		T
1.1 Определение и	1. Особенности	
особенности	распределенных систем	
распределённых систем	2. Определение	
	распределенной системы	
	Отказоустойчивость в	
	распределенных системах	
1.2 Архитектура	3. Архитектура МКМД	
параллельных и	4. Архитектура ОКОД	
распределенных систем	5. Сервисы распределенных	
	систем	
	6. Архитектурные стили	
	распределенных систем	
2. Параллельное программи	<i>ірование</i>	
2.1 Параллельные	7. Блочное распараллеливание	Реализовать блочное
вычисления	циклов	распараллеливание циклов
	9. Развертка циклов	Реализовать преобразование циклов
	10. Виды преобразования	расширением скаляра
	циклов	
2.2 Технология	11. Средства синхронизации	Используя ОрепМР, реализовать
параллельного	потоков в OpenMD	параллельный алгоритм
программирования	12. Неявная барьерная	
систем с общей памятью	синхронизация	
на ОрепМР	13. Общие и локальные	
- Former	переменные потока	
2.3 Использование	14. Сетка, блок и поток	
графических процессоров	15. Ограничения на функции,	
графи псеких предссеоров	исполняемые на GPU	
2.4 Интерфейс передачи	16. Буферизированная	Реализовать параллельный ввод
сообщений МРІ	передача сообщений	1 саназовато наражелоном ввоо
COCOMCINIA IVII I	17. Коллективное	
	взаимодействие ветвей	
	программы	
	18. Исключающая редукция	
3 Модали паспрадалациих		
3. Модели распределенных 3.1 Модель		
	, ,	
распределенного	коммуникационного канала	
исполнения	20. Упорядочивание событий	D
3.2 Логическое время	21. Логические часы	Реализовать алгоритм определения
	22. Скалярное время	времени событий
226	23. Векторное время	
3.3 Синхронное и	24. Асинхронное исполнение	
асинхронное исполнение	25. Эмуляции	
3.4 Модели отказов	26. Отказы процессов	Построение модели отказов
	27. Иерархия моделей	
	неисправности	
3.5 Глобальное состояние	28. Распределенная сборка	
	мусора	
	29. Распределенное	
	обнаружение завершения	
	30. Фиксация глобального	
	состояния	
4. Распределенные систем	bl	

4.1 Коммуникационная	31. Алгоритмы на графах		
подсистема	32. Удаленные вызовы		
4.2 Синхронизация	33. Алгоритмы синхронизации	Радвирания авромимыя аниуронирания	
4.2 Синхронизация		Реализация алгоритма синхронизации	
	часов 34. Распределенные		
	1 7		
4.2 D	взаимоисключения		
4.3 Репликация и	35. Пассивная репликация		
консистентность	36. Активная репликация		
	37. Размещение и обновление		
	реплик		
4.4 Безопасность	38. Модели контроля доступа		
	39. Дискретное управление		
	доступом		
4.5 Системы хранения	40. Распределенные		
данных	кластерные файловые системы		
	41. Пиринговые системы		
4.6 Распределенные	42. Модели распределённых		
вычисления	вычислений.		
	43. Компоненты метасистемы		
Компетенции			
ПК-2 Способен	Кейс задание 1		
разрабатывать	Требуется реализовать параллельную реализацию алгоритма решения системы		
требования,	линейных алгебраических уравнен		
проектировать и	- Определить технологии и ал	горитмы для реализации эффективного	
реализовывать	алгоритма для системы с общей па	ОНТРИ	
программное	- Определить и описать алго		
обеспечение	эффективной реализации алгоритм		
оосенечение		раллельного алгоритма с использованием	
	выбранных методов и технологий		
	Кейс задание 2		
		цих операций осуществить умножение	
		личные виды распределения данных между	
	процессами (выбрать из 64 вариантов использования топологий 5 наиболее		
	эффективных, обосновать выбор и	сравнить время выполнения).	

Составитель (и): Штейнбрехер О.А., канд. техн. наук, доцент кафедры ИВТ (фамилия, инициалы и должность преподавателя (ей))