Подписано электронной подписью: Вержицкий Данил Григорьевич Должность: Директор КГПИ КемГУ Дата и время: 2025-04-23 00:00:00 471086fad29a3b30e244c728abc3661ab35c9d50210dcf0e75e03a5b6fdf6436

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «КЕМЕРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кузбасский гуманитарно-педагогический институт

Факультет информатики, математики и экономики

УТВЕРЖДАЮ Декан А.В. Фомина «08» февраля 2024 г.

Рабочая программа дисциплины

К.М.07.02 Алгебра и геометрия

Направление подготовки **01.03.02 Прикладная математика и информатика**

Направленность (профиль) подготовки **ИНТЕЛЛЕКТУАЛЬНЫЙ АНАЛИЗ ДАННЫХ**

Программа бакалавриата

Квалификация выпускника бакалавр

> Форма обучения *Очная*

> Год набора 2024

Новокузнецк 2024

Оглавление

1 Цель дисциплины.	3
Формируемые компетенции, индикаторы достижения компетенций, знания, умения, навыки	3
Место дисциплины	3
2 Объём и трудоёмкость дисциплины по видам учебных занятий. Формы промежуточной аттестации.	3
3. Учебно-тематический план и содержание дисциплины	4
3.1 Учебно-тематический план	4
4 Порядок оценивания успеваемости и сформированности компетенций обучающегося в текущ и промежуточной аттестации	
5 Материально-техническое, программное и учебно-методическое обеспечение дисциплины	7
5.1 Учебная литература	7
5.2 Материально-техническое и программное обеспечение дисциплины	8
5.3 Современные профессиональные базы данных и информационные справочные системы	9
б Иные сведения и (или) материалы	9
б.1.Примерные темы письменных учебных работ	9
6.2. Примерные вопросы и задания / задачи для промежуточной аттестации	.14

1 Цель дисциплины.

В результате освоения данной дисциплины у обучающегося должна быть сформирована компетенция основной профессиональной образовательной программы бакалавриата ОПК-1.

Формируемые компетенции, индикаторы достижения компетенций, знания, умения, навыки

Таблица 1 – Индикаторы достижения компетенций, формируемые дисциплиной					
Код и название	Индикаторы достижения	Знания, умения, навыки (ЗУВ), формируемые			
компетенции	компетенции по ОПОП	дисциплиной			
ОПК-1. Способен	1.1 строго доказывает	Знать:			
применять	математические	 основные факты, концепции и принципы 			
фундаментальные	утверждения,	алгебры и геометрии.			
знания, полученные в	основываясь на фактах и	Уметь:			
области	концепциях теорий в	 грамотно пользоваться языком алгебры и 			
математических и	области математических	геометрии;			
(или) естественных	и естественных наук, выделяя главные	•			
наук, и использовать	смысловые аспекты в	- строго доказывать математические			
	доказательствах;	утверждения в области алгебры и геометрии,			
ИХ В	1.2 Решает практические	выделяя главные смысловые аспекты в			
профессиональной	задачи на основе	доказательствах;			
деятельности	фундаментальных знаний	 применять знания алгебры и геометрии для 			
	в области математических	решения практических задач.			
	и естественных наук	Владеть:			
	1.3 Решает	способностью решать профессиональные			
	профессиональные задачи	задачи в исследовательской и прикладной			
	в исследовательской и	деятельности, используя основы алгебры и			
	прикладной	геометрии.			
	деятельности, используя	reomerphin.			
	основы современных				
	математических теорий				

Место дисциплины

Дисциплина включена в модуль «Математическое моделирование в задачах профессиональной деятельности» ОПОП ВО. Дисциплина осваивается на 1 курсе в 1-2 семестрах.

2 Объём и трудоёмкость дисциплины по видам учебных занятий. Формы промежуточной аттестации.

Таблица 2 – Объем и трудоемкость дисциплины по видам учебных занятий

Общая трудоемкость и виды учебной работы по дисциплине, проводимые в	Объём часов по формам обучения
разных формах	- · ·
разных формах	ОФО
1 Общая трудоемкость дисциплины	360
2 Контактная работа обучающихся с преподавателем (по видам учебных	160
занятий) (всего)	
Аудиторная работа (всего):	160
в том числе:	
лекции	64
практические занятия, семинары	96
Внеаудиторная работа (всего):	
3 Самостоятельная работа обучающихся (всего)	128

4 Промежуточная аттестация обучающегося:	72
- экзамен (1 семестр);	
- экзамен (2 семестр).	

3. Учебно-тематический план и содержание дисциплины.

3.1 Учебно-тематический план

Таблица 3 - Учебно-тематический план очной формы обучения

п/п и	Разделы и темы дисциплины	Общая Трудоемкость занятий грудоём (час.) кость ОФО				Формы текущего контроля и	
№ недели п/п	по занятиям	(всего час.)	Ауди заня лекц.	_	СРС	промежуточно й аттестации успеваемости	
Сем	естр 1	22			0		
1	1. Матричная алгебра	22	8	6	8		
1	1.1 Матрицы, операции над матрицами	8	2	2	4	**	
2	1.2.Определители, их свойства. Миноры и	6	2	2	2	Индивидуа	
	алгебраические дополнения. Разложение					льное	
_	определителя по элементам ряда	_				задание	
3	1.3. Обратная матрица. Ранг матрицы	8	4	2	2		
	2. Системы линейных уравнений	26	8	10	8		
4	2.1. Решение систем п линейных алгебраических	6	2	2	2		
	уравнений с п неизвестными методом Крамера.						
5	2. 2. Решение систем линейных алгебраических	6	2	2	2	Контрольна	
	уравнений и матричных уравнений с помощью					я работа	
	обратной матрицы.					Кейс-	
6	2.3. Теорема Кронекера-Капелли.	6	2	2	2	задание	
7	2.4. Решение систем m линейных алгебраических	8	2	4	2		
	уравнений с п неизвестными методом Гаусса.						
	3. Векторная алгебра (геометрические векторы)	28	4	4	20		
8	3.1. Векторы на плоскости и в пространстве.	9	1	1	7		
	Линейные операции над векторами.					Контрольна	
9	3.2. Скалярное произведение векторов, его	9	1	1	7	я работа	
	основные свойства, координатное выражение.					я работа	
10	3. 3. Векторное и смешанное произведение	10	2	2	6		
	векторов, их основные свойства, приложения						
	4. Аналитическая геометрия на плоскости	28	8	8	12		
11	4.1. Система координат на плоскости. Основные	6	2	2	2		
	задачи.					Индивидуал	
12	4.2. Прямая на плоскости. Способы задания.	8	2	2	4	ьное	
13	4.3.Угол между двумя прямыми. Расстояние от	8	2	2	4	задание	
	точки до прямой.						
14	4.4. Линии второго порядка.	6	2	2	2		
	5. Аналитическая геометрия в пространстве	40	8	16	16		
15	5.1. Плоскость. Различные уравнения плоскости.	10	2	4	4	Контрольна	
	Угол между плоскостями. Условие параллельности					я работа	
	и перпендикулярности двух плоскостей.						
16	5.2. Прямая в пространстве. Способы задания.	10	2	4	4		
	Условие параллельности и перпендикулярности						
	прямых.						
17	5.3.Взаимное расположение прямой и плоскости в	10	2	4	4		

п/п и	Общая Трудоемкость заняти грудоём (час.) Разделы и темы дисциплины кость ОФО				занятий	Формы - текущего контроля и	
№ недели п/п	по занятиям	(всего час.)	-	ятия СРС практ.		промежуточно	
	пространстве.						
18	5.4. Поверхности второго порядка	10	2	4	4		
	Промежуточная аттестация - экзамен	36				экзамен	
ИТС	ОГО по 1 семестру	180	36	44	64	36	
Сем	естр 2						
	1. Комплексные числа	26	4	8	14		
1	1.1. Определение комплексного числа.	13	2	4	7		
	Комплексная плоскость. Форма записи					Контрольна	
	комплексных чисел.					я работа	
2	1.2. Операции над комплексными числами.	13	2	4	7	_	
	2. Линейные пространства	62	12	20	30		
3	2.1. Линейные векторные пространства. Линейная	12	2	4	6		
	зависимость векторов.						
4	2.2. Размерность и базис векторного пространства.	16	2	8	6	Контрольна	
5	2.3. Переход к новому базису.	8	2	2	4	я работа	
6	2.4. Линейные подпространства. Сумма и	8	2	2	4	Коллоквиум	
	пересечение линейных подпространств.					,	
7	2.5. Евклидовы пространства.	10	2	2	6		
8	2.6. Ортонормированная система векторов.	8	2	2	4		
	Ортогональное дополнение						
	3. Линейные операторы	40	10	20	10		
9	3.1. Линейные операторы и их свойства.	8	2	4	2		
10	3.2. Матрицы оператора в разных базисах.	8	2	4	2		
	Определитель оператора в разных базисах.						
11	3.3. Преобразование матрицы линейного	8	2	4	2	Контрольна	
	оператора.		_		_	я работа	
12	3.4. Собственные векторы и собственные значения	8	2	4	2		
	линейного оператора.		_		_		
13	3.5.Приведение матрицы линейного оператора к	8	2	4	2		
	диагональному виду		_		_		
	4. Квадратичные формы	16	2	4	10		
14	4.1. Квадратичные формы. Приведение	7	1	2	4		
1.	квадратичной формы к каноническому виду.	,	1		•	Контрольна	
15	4.2. Критерий Сильвестра	9	1	2	6	я работа	
16	Промежуточная аттестация - экзамен	36	-			экзамен	
	ого по 2 семестру	180	28	52	64	36	
1110	Всего:	360	64	96	128	72	

4 Порядок оценивания успеваемости и сформированности компетенций обучающегося в текущей и промежуточной аттестации.

Для положительной оценки по результатам освоения дисциплины обучающемус янеобходимо выполнить все установленные виды учебной работы. Оценка результатов работы обучающегося в баллах (по видам) приведена в таблице 4.

Таблица 4 - Балльно-рейтинговая оценка результатов учебной работы

обучающихся по видам (БРС)

1 семестр

Учебная работа	Сумма	Виды и результаты	Оценка в аттестации	Баллы	
(виды)	баллов	учебной работы		(17 недель)	
Текущая учебная	60	Индивидуальное	За ИЗ от 5 до 10 баллов	10-20	
работа в семестре		задание (2 задания)	5 баллов (пороговое значение)		
			10 баллов (максимальное значение)		
		Контрольные работы	За одну КР от 5до:10 баддов		
		(защита контрольной	5баллов (пороговое значение)	15 - 30	
		работы)	10 баллов (максимальное значение)		
		(3 работы)			
		Кейс-задание	ббаллов (пороговое значение)	6- 10	
			10 баллов (максимальное значение)		
Итого по текуще	й работе і	в семестре		31 - 60	
Промежуточная	40	Решение задачи 1.	5 баллов (пороговое значение)	5 - 10	
аттестация			10 баллов (максимальное значение)		
(экзамен)		Решение задачи 2.	5 баллов (пороговое значение)	5 - 10	
			10 баллов (максимальное значение)		
		Вопрос билета №1	5 баллов (пороговое значение)	5 - 10	
			10 баллов (максимальное значение)		
		Вопрос билета №2	5 баллов (пороговое значение)	5- 10	
			10 баллов (максимальное значение)		
Итого по промежуточной аттестации (экзамену)					
Суммарная оценка по дисциплине: Сумма баллов текущей и промежуточной аттестации 50 – 100 б.					

2 семестр

	·F					
Учебная работа	Сумма	Виды и результаты	Оценка в аттестации	Баллы		
(виды)	баллов	учебной работы		(17 недель)		
Текущая учебная	60	Контрольные работы	За одну КР от 5до:10 баддов			
работа в семестре		(защита контрольной	5 баллов (пороговое значение)	20- 40		
		работы)	10 баллов (максимальное значение)			
		(4 работы)				
		Коллоквиум	11 баллов (пороговое значение)	11- 20		
			20 баллов (максимальное значение)			
Итого по текуще	й работе	в семестре	·	31 - 60		
Промежуточная	40	Решение задачи 1.	5 баллов (пороговое значение)	5 - 10		
аттестация			10 баллов (максимальное значение)			
(экзамен)		Решение задачи 2.	5 баллов (пороговое значение)	5 - 10		
			10 баллов (максимальное значение)			
		Вопрос билета №1	5 баллов (пороговое значение)	5 - 10		
			10 баллов (максимальное значение)			
		Вопрос билета №2	5 баллов (пороговое значение)	5- 10		
			10 баллов (максимальное значение)			
Итого по промежуточной аттестации (экзамену)						
Суммарная оцен	Суммарная оценка по дисциплине: Сумма баллов текущей и промежуточной аттестации 50 – 100 б.					

В промежуточной аттестации оценка выставляется в ведомость в 100-балльной шкале и в буквенном эквиваленте (таблица 5)

Таблица 5 – Соотнесение 100-балльной шкалы и буквенного эквивалента оценки

Commence	Уровни освоения	Экзамен		Зачет
Сумма набранных баллов	дисциплины и	Оценка	Буквенный эквивалент	Буквенный
Оаллов	компетенций			эквивалент
86 - 100	Продвинутый	5 отлично		
66 - 85	Повышенный	4 хорошо		Зачтено
51 - 65	Пороговый	3 удовлетворительно		
0 - 50	Первый	2 неудовлетворительно		Не зачтено

5 Материально-техническое, программное и учебнометодическое обеспечение дисциплины.

5.1 Учебная литература

Основная учебная литература

- 1. Рудык, Б.М. Линейная алгебра [Электронный ресурс]: учебн. пособие / Б.М. Рудык Электрон. текстовые дан. Москва : ИНФРА-М, 2013. 318 с. Режим доступа: http://znanium.com/bookread2.php?book=363158
- 2. Бортаковский, А.С. Линейная алгебра в примерах и задачах [Электронный ресурс]: учебн. пособие / А.С. Бортаковский, А.В. Пантелеев Электрон. текстовые дан. Москва : ИНФРА-М, 2015. 592 с. Режим доступа: http://znanium.com/bookread2.php?book=494895

Дополнительная учебная литература

- 1. Шершнев, В.Г. Основы линейной алгебры и аналитической геометрии [Электронный ресурс]: учебн. пособие / В.Г. Шершнев Электрон. текстовые дан. Москва : ИНФРА-М, 2014. 168 с. Режим доступа: http://znanium.com/bookread2.php?book=318084
- 2. Индивидуальные задания по высшей математике: [Электронный ресурс]: учебн. пособие. В 4 ч. Ч. 1 Линейная и векторная алгебра. Аналитическая геометрия. Дифференциальное исчисление функций одной переменной / А.П. Рябушко [и др.]; под общ. ред. А.П. Рябушко 7-е изд. Электрон. текстовые дан. Минск : Выш. шк., 2013. 304 с. Режим доступа: http://znanium.com/bookread2.php?book=508859
- 3. Бортаковский, А.С. Линейная алгебра и аналитическая геометрия. Практикум [Электронный ресурс]: учебн. пособие / А.С. Бортаковский, А.В. Пантелеев Электрон. текстовые дан. Москва : ИНФРА-М, 2015. 352 с. Режим доступа: http://znanium.com/bookread2.php?book=476097
- 4. Бутузов В. Ф. Линейная алгебра в вопросах и ответах [Текст] : учебное пособие для вузов / В. Ф. Бутузов, Н. Ч. Крутицкая, А. А. Шишкин ; под ред. В. Ф. Бутузова. Москва : ФИЗМАТЛИТ, 2001. 247 с.
- 5. Ильин В. А. Линейная алгебра [Текст] : учебник. Издание 6-е, стреотипное. Москва : Физматлит, 2005. 280 с. (Курс высшей математики и математической физики ; вып. 4). Гриф МО "Рекомендовано".
- 6. Линейная алгебра [Текст] : методические указания к практической и самостоятельной работам / Новокузнецкий филиал-институт ГОУ ВПО "КемГУ", Факультет информационных технологий, Кафедра математики и математического моделирования; сост. Ю. В. Шпакова. Новокузнецк, 2010. 27 с.
- 7. Канатников, А. Н. Аналитическая геометрия [Текст] : учебник для вузов. Москва : Академия, 2009. 208 с. (Университетский учебник). Гриф МО "Рекомендовано"
- 8. Алгебра и геометрия : [Электронный ресурс]учеб. пособие : / Г.И. Шуман, О.А. Волгина, Н.Ю. Голодная. Электрон. текстовые дан.— М. : РИОР : ИНФРА-М, 2018. (Высшее образование). 160 с. Режим доступа: http://znanium.com/bookread2.php?book=908228
 - 9. Алгебра и геометрия. Сборник задач и решений с применением системы

Марlе [Электронный ресурс]: учеб. пособие / М.Н. Кирсанов, О.С. Кузнецова. – Электрон. текстовые дан.— М.: ИНФРА-М, 2017. — 272 с. — (Высшее образование: Бакалавриат). – Режим доступа: http://znanium.com/bookread2.php?book=648409

10. Линейная алгебра и многомерная геометрия [Электронный ресурс]:учеб. пособие /ЕфимовН.В., РозендорнЭ.Р., 3-е изд. — Электрон. текстовые дан. - М.: Физматлит, 2004. - 464 с.: ISBN 978-5-9221-0386-5http://znanium.com/bookread2.php?book=544609

5.2 Материально-техническое и программное обеспечение дисциплины.

Учебные занятия по дисциплине проводятся в учебных аудиториях КГПИ ФГБОУ ВО «КемГУ»:

BO «Keml'y»:	
404 Учебная аудитория для проведения:	Учебный
- занятий лекционного типа;	корпус №4.
- групповых и индивидуальных консультаций;	neprijee.
- текущего контроля и промежуточной аттестации.	654079,
Специализированная (учебная) мебель: доска меловая, кафедра, столы, стулья.	*
Оборудование: переносное - ноутбук, экран, проектор.	Кемеровская
Используемое программное обеспечение: MSWindows (MicrosoftImaginePremium 3 year	область, г.
по сублицензионному договору № 1212/КМР от 12.12.2018 г. до 12.12.2021 г.), LibreOffice	Новокузнецк,
(свободно распространяемое ПО), Яндекс.Браузер (отечественное свободно	пр-кт
распространяемое ПО).	Металлургов,
Интернет с обеспечением доступа в ЭИОС.	
	д. 19
603 Учебная аудитория для проведения:	Учебный
- занятий лекционного типа;	корпус №4.
- занятий семинарского (практического) типа;	Kopii y C 3 (2 1)
- групповых и индивидуальных консультаций;	654079,
- текущего контроля и промежуточной аттестации.	,
Специализированная (учебная) мебель: доска меловая, столы, стулья.	Кемеровская
Оборудование для презентации учебного материала: переносное - ноутбук, экран,	область, г.
проектор.	Новокузнецк,
Используемое программное обеспечение: MSWindows (MicrosoftImaginePremium 3 year	
по сублицензионному договору № 1212/КМР от 12.12.2018 г. до 12.12.2021 г.), LibreOffice	_
(свободно распространяемое ПО), Mpich 2 (свободно распространяемое ПО), FoxitReader	металлургов,
(свободно распространяемое ПО), Firefox 14 (свободно распространяемое ПО), QGIS	д. 19
(свободно распространяемое ПО), UML-диаграммы (бесплатная версия).	
Интернет с обеспечением доступа в ЭИОС.	
604 Учебная аудитория для проведения:	Учебный
- занятий лекционного типа;	корпус №4.
- занятий семинарского (практического) типа;	
- групповых и индивидуальных консультаций;	654079,
- текущего контроля и промежуточной аттестации.	Кемеровская
Специализированная (учебная) мебель: доска меловая, столы, стулья.	•
Оборудование для презентации учебного материала: переносное - ноутбук, экран,	
проектор. Мено и эуомоо ирогроммиоо обознованию: MSWindows (Microsoft Imagina Pramium 3 year	Новокузнецк,
Используемое программное обеспечение : MSWindows (MicrosoftImaginePremium 3 year по сублицензионному договору № 1212/КМР от 12.12.2018 г. до 12.12.2021 г.), LibreOffice	
по сублицензионному договору ме 1212/кмР от 12.12.2018 г. до 12.12.2021 г.), Глогеотпсе (свободно распространяемое ПО), Firefox	_
(свободно распространяемое по), гохикеааег (свободно распространяемое по), гистох 14 (свободно распространяемое ПО), Яндекс. Браузер (отечественное свободно	п 10
распространяемое ПО), индекс. враузер (отечественное свооодно распространяемое ПО).	д. 19
распространяемое 110). Интернет с обеспечением доступа в ЭИОС.	
ETHICPHOL COUCHE TORROW AUCTYRIA B SPICE.	<u> </u>

5.3 Современные профессиональные базы данных И информационные справочные системы.

Перечень СПБД и ИСС по дисциплине

- 1. Общероссийский математический портал (информационная система) http://www.mathnet.ru/
- 2. Mathcad-справочник no высшей математике http://www.exponenta.ru/soft/Mathcad/learn/learn.asp

6 Иные сведения и (или) материалы.

6.1.Примерные темы письменных учебных работ

6.1.1. Индивидуальное задание по теме «Матричная алгебра»

- 1. Вычислить определитель:
- $\begin{vmatrix} 2 & -5 & 9 & 1 \\ 3 & -1 & 5 & -5 \\ 2 & 18 & -7 & -10 \end{vmatrix}$

2. Доказать тождество:

$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (b-a)(c-a)(c-b).$$

3. Найти значение многочлена f(x) от матрицы A:

$$f(x) = 3x^2 - 2x + 5,$$
 $A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & -4 & 1 \\ 3 & -5 & 2 \end{pmatrix}.$

4. Решить матричное уравнение. Сделать проверку.

$$\begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix} \cdot X = \begin{pmatrix} -1 & 3 & 0 \\ 1 & 2 & -1 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & -1 & 4 & 2 & 1 \\ -1 & 2 & 1 & 5 & 6 \\ 3 & -5 & 2 & -8 & -11 \\ 2 & 4 & 2 & 10 & 12 \end{pmatrix}$$

6.1.2. Контрольная работа по теме «Системы линейных уравнений»

- 1. Решить систему линейных уравнений: методом Гаусса.
- а) методом Крамера; проверку.
- б) методом Гаусса;

2. Решить систему линейных уравнений

Найти общее решение, частное, сделать

в) при помощи обратной матрицы.

$$\begin{cases} 3X_1 + 2X_2 + X_3 = 5, \\ 2X_1 + 3X_2 + X_3 = 1, \\ 2X_1 + X_2 + 3X_3 = 11. \end{cases} \begin{cases} 2X_1 - X_2 + 3X_3 - X_4 + X_5 = 3 \\ 3X_1 + 4X_2 - X_3 + 4X_4 = 2 \\ X_1 + 5X_2 - 4X_3 + 5X_4 - X_5 = -1 \\ 4X_1 + 9X_2 - 5X_3 + 9X_4 - X_5 = 1 \end{cases}$$

6.1.3. Кейс-задание по теме «Системы линейных уравнений»

Автозавод известного бренда производит 4 вида легковых автомобилей закрытого типа: седан, лимузин, универсал и купе. При этом используются материалы четырех типов: М1, М2, М3, М4. Нормы расхода каждого из них на один вид автомобиля и объем расхода материала на 1 день заданы таблицей (см. таблицу). Найти ежедневный объем выпуска каждого вида автомобиля.

	Нормы ра	Нормы расхода материала на один автомобиль, ед.				
Вид		ИЗМ	ſ .		материала	
материала	004011					
	седан	седан универсал купе	лимузин	ед. изм.		
M1	2	3	1	4	1120	
M2	2	1	5	2	1360	
M3	1	2	3	1	980	
M4	2	3	1	1	1030	

6.1.4. Контрольная работа по темам: «Векторная алгебра», «Аналитическая геометрия в пространстве»

Даны координаты вершин пирамиды $A_1(4,2,5)$, $A_2(0,7,2)$, $A_3(0,2,7)$, $A_4(1,5,0)$. Найти: а) длину ребра A_1A_2 ; б) площадь грани $A_1A_2A_3$; в) объём пирамиды; г) уравнение плоскости $A_1A_2A_3$; д) угол между ребром A_1A_4 и гранью $A_1A_2A_3$; е) уравнение высоты, опущенной из вершины A_4 на грань $A_1A_2A_3$; ж) длину высоты, опущенной из вершины A_4 на грань $A_1A_2A_3$.

6.1.5. Индивидуальное задание по теме «Аналитическая геометрия на плоскости»

- 1. Уравнение одной из сторон квадрата x+3y-5=0. Составить уравнения трех остальных сторон квадрата, если (-1;0) точка пересечения его диагоналей.
- 2. Даны уравнения одной из сторон ромба 2x+y-5=0 и одной из его диагоналей y-1=0. Диагонали ромба пересекаются в точке (3;1). Найти уравнения остальных сторон ромба.
- 3. Уравнения двух сторон параллелограмма x+2y+2=0 и x+y=0, а уравнение одной из его диагоналей x+2=0. Найти координаты вершин параллелограмма.

- 4. Даны две вершины A(-3, 3) и B(5, -1) и точка D(4, 3) пересечения высот треугольника. Составить уравнения его сторон.
- 5. Даны вершины A(1, 1), B(2, 3), C(4, 1) трапеции ABCD (AD | BC). Известно, что диагонали трапеции взаимно перпендикулярны. Найти координаты вершины D этой трапеции.
- 6. Даны уравнения двух сторон треугольника 5x-4y+15=0 и 4x+y-9=0. Его медианы пересекаются в точке (0, 2). Составить уравнение третьей стороны треугольника.
- 7. Даны две вершины A(2;-2), B(3;-1) и точка P(1;0) пересечения медиан треугольника ABC . Составить уравнение высоты треугольника, проведенной через третью вершину C .

6.1.6. Контрольная работа по теме «Комплексные числа»

- 1. Дано: $z_1 = 2 + i$, $z_2 = -3 + 2i$. Найти: $z_1 + z_2$, $z_1 \cdot z_2$, z_1 / z_2 .
- 2. Дано: $z_1=1+i\,,\;\;z_2=-1+i\,.$ Найти $z_1^5\,,\;\;\sqrt[3]{z_2}$.
- 3. Решить уравнение: a) $x^2 + x + 4 = 0$ б) $x^4 6x^2 + 25 = 0$
- 4. Построить на комплексной плоскости множество точек z, удовлетворяющих условиям: Re $z \le 2$; $|\text{Im}z| \le 1$

6.1.7. Контрольная работа по теме «Линейные пространства»

- 1. Показать, что векторы a=(2,3,4) b=(2,1,5) c=(-1,0,1) образуют базис и найти координаты вектора d=(3,-4,2) в этом базисе.
- 2. В базисе e_1 , e_2 , e_3 задан вектор x=(2,3,4). Найти координаты этого вектора в базисе

$$e_1^*, e_2^*, e_3^*, \text{ если} \begin{cases} e_1 - 2e_2 + 3e_3 = e_1^*, \\ 2e_1 + 3e_2 - 4e_3 = e_2^*, \\ 3e_1 - 2e_2 - 5e_3 = e_3^*. \end{cases}$$

3. В евклидовом пространстве R⁴ подпространство L задано системой уравнений

$$\begin{cases} X_1 + 3X_2 - X_3 + X_4 = 0, \\ 2X_1 + X_2 - 3X_3 = 0, \\ 3X_1 + 4X_2 - 4X_3 + X_4 = 0. \end{cases}$$

Найти ортогональный базис в L.

6.1.8. Коллоквиум

- 1. Является ли линейным пространством множество, всех:
 - матриц размера тхп;
 - диагональных матриц порядка n;
 - невырожденных матриц.
- 2. Являются ли векторы $\vec{a}_1 = (5;4;3)$, $\vec{a}_2 = (3;3;2)$, $\vec{a}_3 = (8;1;3)$ линейно зависимыми?
- 3. Показать, что система векторов $\vec{e}_1 = (1;2;3)$ $e_2 = (3;0;2)$ $\vec{e}_3 = (-2;1;1)$ образует базис в \vec{e}_3 и найти координаты вектора $\vec{e}_3 = (4;2;-1)$ в этом базисе.

4.
$$\begin{cases} x_1 - 2x_2 + 3x_3 + x_4 = 0, \\ 2x_1 + 3x_2 - 4x_3 + 3x_4 = 0, \\ 3x_1 + x_2 - x_3 + 4x_4 = 0 \end{cases}$$

Множество решений однородной системы образует линейное пространство. Найти размерность этого пространства и какой-нибудь базис в нем.

5. Дана матрица $A = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 4 & 1 \\ -1 & 2 & 3 \end{pmatrix}$ перехода от базиса (e_1, e_2, e_3) к базису (c_1, c_2, c_3) . Найти

координаты векторов e_1, e_2, e_3 в базисе c_1, c_2, c_3 .

- 6. Является ли линейным подпространством в пространстве матриц порядка п подмножество, образованное всеми:
 - матрицами с нулевой первой строкой;
 - нижнетреугольными матрицами;
 - невырожденными матрицами.
- 7. Подпространства $L_1=L(a_1,a_2,a_3)$, $L_2=L(b_1,b_2,b_3)$ натянуты на следующие системы векторов: $\vec{a}_1=(1;2;1)$, $\vec{a}_2=(1;1;-1)$, $\vec{a}_3=(1;3;3)$; $\vec{b}_1=(2;3;-1)$, $\vec{b}_2=(1;2;2)$, $\vec{b}_3=(1;1;-3)$. Найти базисы и размерности подпространств L_1 , L_2 , L_1+L_2 .
- 8. Найти базис линейной оболочки системы векторов: $\vec{e}_1 = (1;0;0;-1)$, $\vec{e}_2 = (2;1;1;0)$, $\vec{e}_3 = (1;1;1;1)$, $\vec{e}_4 = (1;2;3;4)$, $\vec{e}_5 = (0;1;2;3)$.
- 9. Векторы $\overrightarrow{e_1}, e_2, e_3$ образуют ортогональный базис. Найти скалярное произведение векторов $\overrightarrow{x}=2e_1-3e_2+4e_3$ и $\overrightarrow{y}=e_1+e_2-5e_3$ и их длины, если $\left|e_1\right|=1$, $\left|e_2\right|=2$, $\left|e_3\right|=2$.
- 10. Для каких векторов неравенство Коши-Буняковского превращается в равенство?
- 11. В евклидовом арифметическом пространстве R^4 найти угол между векторами $\vec{a}=(2;1;1;0)$ $\vec{e}=(1;2;3;4)$.

12-14. В евклидовом пространстве R^4 подпространство V задано системой уравнений $\begin{cases} x_1-2x_2+3x_3+x_4=0,\\ 2x_1+3x_2-4x_3+3x_4=0\\ 3x_1+x_2-x_3+4x_4=0 \end{cases}$

Найти по одному ортогональному базису в пространствах V, его ортогональном дополнении W и \mathbb{R}^4 .

- 15. Является ли оператор $A(x)=(x_1-x_2;2x_1+x_3;x_2-2x_3)$ линейным, если вектор $\vec{x}=(x_1;x_2;x_3)$?
- 16-17. Линейный оператор задан матрицей $A = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 4 & 1 \\ -1 & 2 & 3 \end{pmatrix}$ в некотором базисе. Найти

базис ядра и дефект линейного оператора.

18. Найти (в том же базисе) координаты вектора y=A(x), если оператор задан матрицей $A=\begin{pmatrix} 1 & 1 & 3 \end{pmatrix}$

$$\begin{pmatrix} 1 & 1 & 3 \\ 0 & 4 & 1 \\ -1 & 2 & 3 \end{pmatrix} \mathbf{H} \stackrel{\rightarrow}{x} = 2e_1 + e_2 - e_3.$$

19-20. Матрица линейного оператора в базисе (e_1, e_2, e_3) имеет вид $A = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 4 & 1 \\ -1 & 2 & 3 \end{pmatrix}$. Найти

матрицу этого оператора в базисе (c_1, c_2, c_3) , если

$$\vec{c_1} = 2e_1 + e_2 - e_3$$
, $\vec{c_2} = e_1 + 3e_2 + e_3$, $\vec{c_3} = e_1 - 2e_2 + 3e_3$.

6.1.9. Контрольная работа по теме «Линейные операторы. Квадратичные формы»

1. Найти матрицу A^* линейного оператора в базисе e_1^* , e_2^* , заданного матрицей A в базисе

$$e_1, e_2$$

$$A = \begin{pmatrix} -3 & 1 \\ 2 & -1 \end{pmatrix}, e_1^* = e_2$$

$$e_2^* = e_1 + e_2$$

Найти базис ядра и дефект линейного оператора

3. Найти собственные значения и собственные векторы линейного оператора, заданного матрицей A в базисе e_1, e_2, e_3 .

13

$$A = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}.$$

- 4. Привести к диагональному виду матрицу $A = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}$.
- 5. Дана квадратичная форма $L(x_1, x_2, x_3) = x_1^2 5x_2^2 + 8x_3^2 + 3x_1x_2 2x_1x_3 + 8x_2x_3$ Записать ее в матричном виде.
- 6. Привести квадратичную форму к каноническому виду. $L(x_1, x_2, x_3) = x_1^2 + x_1x_2 + 4x_2x_3$.
- 7. Исследовать на знакоопределенность квадратичную форму $L(x_1,x_2,x_3)=x_1^2+4x_2^2+x_3^2+2x_1x_2$.

6.2. Примерные вопросы и задания / задачи для промежуточной аттестации

Таблица 6 - Примерные теоретические вопросы и практические задания к экзамену

Семестр 1

Разделы и темы	Примерные	Примерные практические задания
1. Матричная алгебра	теоретические вопросы	
1.1 Матрицы, операции над матрицами	1. Матрицы, виды матриц 2. Операции над матрицами.	1. Найти матрицу Д=ABC-3E, где A= $\begin{pmatrix} 1 & 2 & -3 \\ 1 & 0 & 2 \\ 4 & 5 & 3 \end{pmatrix}, \ B= \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, C=(2\ 0\ 5), \ E-$ единичная матрица. 2. Найти значение многочлена $f(x)$ от матрицы A: $f(x) = 3x^2 - 2x + 5,$ $A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & -4 & 1 \\ 3 & -5 & 2 \end{pmatrix}.$
1.2.Определители, их свойства. Миноры и алгебраические дополнения. Разложение определителя по элементам ряда	 Свойства определителей. Вычисление определителей. 	3. Вычислить определитель матрицы А $A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & -4 & 1 \\ 3 & -5 & 2 \end{pmatrix}$ 4. Вычислить определитель: $\begin{vmatrix} -2 & -5 & -1 & 3 \\ 2 & -5 & 9 & 1 \\ 3 & -1 & 5 & -5 \\ 2 & 18 & -7 & -10 \end{vmatrix}$
1.3. Обратная матрица. Ранг матрицы	5 Обратная матрица. Теорема о существовании обратной матрицы.	5. Найти матрицу B=11.(A-1)/+A/,

	6 Элементарные преобразования матрицы. Ранг матрицы, его вычисление.	$A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & -4 & 1 \\ 3 & -5 & 2 \end{pmatrix}.$ 6. Найти ранг матрицы А: $\begin{pmatrix} 1 & 3 & -2 & 0 \\ 3 & -1 & 5 & 4 \\ 2 & -4 & 7 & 4 \\ 3 & -1 & 5 & 4 \end{pmatrix}$
2. Системы линейных	уравнений	
2.1. Решение систем п линейных алгебраических уравнений с п неизвестными методом Крамера.	7 Системы линейных алгебраических уравнений. 8 Решение систем линейных уравнений методом Крамера.	7. Решить систему линейных уравнений методом Крамера. $\begin{cases} X_1 + X_2 + 2X_3 = -1, \\ 2X_1 - X_2 + 2X_3 = -4, \\ 4X_1 + X_2 + 4X_3 = -2. \end{cases}$ 8. $\begin{cases} X_1 - 2X_2 + 3X_3 = 6, \\ 2X_1 + 3X_2 - 4X_3 = 20, \\ 3X_1 - 2X_2 - 5X_3 = 6. \end{cases}$
2. 2. Решение систем линейных алгебраических уравнений и матричных уравнений с помощью обратной матрицы.	9 Решение систем линейных уравнений с помощью обратной матрицы. 10 Решение матричных уравнений	9. Решить систему линейных уравнений с помощью обратной матрицы. $\begin{cases} X_1 - 2X_2 + 3X_3 = 6, \\ 2X_1 + 3X_2 - 4X_3 = 20, \\ 3X_1 - 2X_2 - 5X_3 = 6. \end{cases}$ 10. Решить матричное уравнение. Сделать $\begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix} \cdot X = \begin{pmatrix} -1 & 3 & 0 \\ 1 & 2 & -1 \end{pmatrix}$
2.3. Теорема Кронекера-Капелли.	11 Исследование систем линейных уравнений.12 Теорема Кронекера-Капелли.	проверку. 11. Совместна ли система? $\begin{cases} X_1 + 2X_2 - 3X_3 + X_4 - 3X_5 = 2, \\ 2X_1 - X_2 + X_3 - 4X_4 + X_5 = 1, \\ 3X_1 + X_2 - 2X_3 - 3X_4 - 2X_5 = 3. \end{cases}$ 12. $\begin{cases} X_1 + X_2 + 2X_3 = -1, \\ 2X_1 - X_2 + 2X_3 = -4, \\ 4X_1 + X_2 + 4X_3 = -2. \end{cases}$
2.4. Решение систем тинейных алгебраических уравнений с п неизвестными методом Гаусса.	 13 Решение систем линейных уравнений методом Гаусса. 14 Однородные системы линейных уравнений. 	13. Решить систему методом Гаусса, найти общее решение. частное, сделать проверку. $\begin{cases} X_1 + 2X_2 - 3X_3 + X_4 - 3X_5 = 2, \\ 2X_1 - X_2 + X_3 - 4X_4 + X_5 = 1, \\ 3X_1 + X_2 - 2X_3 - 3X_4 - 2X_5 = 3. \end{cases}$ 14. Найти ФНР однородной системы. $\begin{cases} X_1 + 3X_2 - X_3 + X_4 = 0, \\ 2X_1 + X_2 - 3X_3 = 0, \\ 3X_1 + 4X_2 - 4X_3 + X_4 = 0. \end{cases}$

3. Векторная алгебра (геометрические векторы)
3.1. Векторы на плоскости и в пространстве. Линейные операции над векторами.	15 Линейные операции над векторами.16 Ортогональная проекция вектора на ось. Свойства проекции.	15. Векторы \vec{a} и \vec{e} образуют угол $\varphi = 120^{\circ}$, причем $ a = 3$ и $ b = 5$ Найти $ a+b $ и $ a-b $. 16. Найти $np_{\vec{c}}(2\vec{a}+3\vec{b})$, если $\vec{a}=(1;2;-4)$, $\vec{e}=(5;3;2)$, $\vec{c}=(-3;2;1)$.
3.2. Скалярное произведение векторов, его основные свойства, координатное выражение.	 17 Разложение вектора по базису.	17. Выяснить, образуют ли векторы $\vec{a}_1 = (1;2;0), \vec{a}_2 = (3;-1;1),$ $\vec{a}_3 = (0;1;1)$ базис в R^3 . 18. Найти угол ВСА в треугольнике АВС, если $A(1;3;2), B(3;4;2), C(2;5;1).$
3. 3. Векторное и смешанное произведение векторов, их основные свойства, приложения	 19 Векторное произведение векторов, его свойства и приложения. 20 Смешанное произведение векторов, его свойства и приложения. 	19. Найти площадь треугольника ABC, если A(1;3;2), B(3;4;2), C(2;5;1). 20. Найти объем пирамиды A ₁ A ₂ A ₃ A ₄ , если A ₁ (3;5;4), A ₂ (8;7;4), A ₃ (5;10;4), A ₄ (4;7;8).
4. Аналитическая геом 4.1. Система координат на плоскости. Основные задачи.	21 Прямоугольная и полярная системы координат на плоскости. 22 Деление отрезка в данном отношении.	 21. Найти координаты точек в полярной системе координат.
4.2. Прямая на плоскости. Способы задания.	 23 Уравнение прямой с угловым коэффициентом, общее уравнение прямой, уравнение прямой, проходящей через одну и две заданные точки. 24 Уравнение прямой в отрезках на осях, нормальное уравнение прямой, полярное уравнение прямой. 	 23. Написать уравнения прямых, проходящих через начало координат под углом 45° к прямой y = 4 - 2x. 24. Уравнение одной из сторон квадрата X + 3V - 5 = 0 . Составить уравнения трех остальных сторон квадрата, если (-1, 0) - точка пересечения его диагоналей.
4.3.Угол между двумя прямыми. Расстояние	25 Угол между двумя прямыми на	25. Среди прямых найти параллельные и перпендикулярные.

от точки до прямой.	плоскости. Условие параллельности и перпендикулярности двух прямых. 26 Взаимное расположение прямых на плоскости. Расстояние от точки до прямой.	а) x-2y+3=0; б) -2x+4y+5=0; в) -2x+y-3=0; г) -2x+4y-6=0. 26. Показать, что прямые 3x+y-2=0 и 6x+2y+1=0 параллельны и найти расстояние между ними.
4.4. Линии второго порядка.	 27 Исследование формы эллипса по его уравнению. 28 Исследование формы гиперболы по ее уравнению. 29 Каноническое уравнение параболы (вывод и исследование). 	 27. На прямой x+5=0 найти точку, одинаково удаленную от левого фокуса и верхней вершины эллипса x²/20 + y²/4 = 1 28. Через точку М(0;-1) и правую вершину гиперболы 3x²-4y²=12 проведена прямая. Найти вторую точку пересечения прямой с гиперболой. 29. Написать уравнение окружности, имеющей центр в фокусе параболы y² = 4x и касающейся ее директрисы. Найти точки пересечения параболы и окружности.
5. Аналитическая геом 5.1. Плоскость. Различные уравнения плоскости. Угол между плоскостями. Условие параллельности и перпендикулярности двух плоскостей.	зо Общее уравнение плоскости. Уравнения плоскости, проходящей через одну и три заданные точки. Уравнение плоскости в отрезках на осях. З1 Угол между плоскостями. Условие параллельности и перпендикулярности двух плоскостей. Расстояние от точки до плоскости.	30. Найти уравнение плоскости, проходящей через начало координат и через точки $P(4;-2;1)$ и $Q(2;4;-3)$. 31. Написать уравнение плоскости, проходящей через точку $M(2;2;-2)$ и параллельной плоскости $x-2y-3z=0$ 32. Найти угол между плоскостями $x-2y-3z=0$ и $2x-4y+5z-1=0$
5.2. Прямая в пространстве. Способы задания. Условие параллельности и перпендикулярности прямых.	32 Общие уравнения прямой линии в пространстве. Векторное, параметрические и канонические уравнения прямой. 33 Угол между двумя прямыми в пространстве. Условие параллельности и	33. Уравнения прямой $\begin{cases} 2x + y + 8z - 16 = 0 \\ x - 2y - z + 2 = 0 \end{cases}$ написать в канонической форме. 34. Найти угол прямой $\begin{cases} y + 2z - 1 = 0 \\ x - 2z + 1 = 0 \end{cases}$ прямой, проходящей через начало координат и через точку $M(2;2;-2)$.

5.3.Взаимное расположение прямой и плоскости в пространстве.	перпендикулярности прямых. 34 Расстояние от точки до прямой в пространстве. 35 Угол между прямой и плоскостью. Взаимное расположение прямой и плоскости в пространстве.	35. Найти расстояние между параллельными прямыми. $\frac{x}{1} = \frac{y-3}{2} = \frac{z-2}{1} \qquad ;$ $\frac{x-3}{1} = \frac{y+1}{2} = \frac{z-2}{1}$ 36. Найти угол прямой $\begin{cases} y+2z-1=0 \\ x-2z+1=0 \end{cases}$ с плоскостью x-2y-3z+3=0
5.4. Поверхности второго порядка	36 Поверхности второго порядка. Эллипсоиды, гиперболоиды.37 Поверхности второго порядка. Параболоиды, конусы.	 37. Составить уравнение сферы, если точки M(4;-1;-3) и N(0;3;-1) являются концами одного из ее диаметров. 38. Определить вид поверхности x² - 2x + y² - 4y - 2z = 0

Семестр 2

Примерные	Примерные практические задания
теоретические вопросы	
ı	
1. Определение комплексного числа. Геометрическое изображение комплексных чисел. 2. Формы записи комплексных чисел.	1. Дано: $z_1=2+i$, $z_2=-3+2i$. Найти: z_1+z_2 , $z_1\cdot z_2$, z_1/z_2 . 2. Дано: $z_1=1+i$, $z_2=-1+i$. Найти z_1^5 , $\sqrt[3]{z_2}$.
 Действия над комплексными числами в алгебраической форме записи. Действия над комплексными числами в тригонометрической форме записи. 	3. Даны два комплексных числа $z_1 = 1 - \frac{7}{2}i; z_2 = -7 - 2i \; . \qquad \qquad \text{Найти}$ значение выражения $\left(\frac{1 - \frac{7}{2}i}{-7 - 2i}\right)^{-4} \text{ в}$ алгебраической форме, $4. \; \text{Для} \text{числа} z = 2 - 2\sqrt{3}i \text{найти}$ тригонометрическую форму, найти z^{20} , найти корни уравнения $w^3 + z = 0$.
ства	
5. Линейные пространства. Определение, примеры.6. Линейная	5. Является ли линейным пространством множество, всех: матриц размера mxn; диагональных матриц порядка n; невырожденных матриц.
	Теоретические вопросы Определение комплексного числа. Геометрическое изображение комплексных чисел. Формы записи комплексных чисел. Действия над комплексными числами в алгебраической форме записи. Действия над комплексными числами в тригонометрической форме записи. Тетва Линейные пространства. Определение, примеры.

	векторов.	$\vec{a}_2 = (3;3;2)$, $\vec{a}_3 = (8;1;3)$ линейно зависимыми?
2.2. Размерность и базис векторного пространства.	 7. Базис и размерность линейного пространства. 8. Разложение вектора по базису 	 7. Показать, что система векторов
2.3. Переход к новому базису.	9. Переход к новому базису.	9. Дана матрица $A = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 4 & 1 \\ -1 & 2 & 3 \end{pmatrix}$ перехода от базиса (e_1, e_2, e_3) к базису (c_1, c_2, c_3) . Найти координаты векторов e_1, e_2, e_3 в базисе c_1, c_2, c_3 . 10. В базисе e_1, e_2, e_3 задан вектор $x = (2,3,4)$. Найти координаты этого вектора в базисе e_1^*, e_2^*, e_3^* если $\begin{cases} e_1 - 2e_2 + 3e_3 = e_1^*, \\ 2e_1 + 3e_2 - 4e_3 = e_2^*, \\ 3e_1 - 2e_2 - 5e_3 = e_3^*. \end{cases}$
2.4. Линейные подпространства. Сумма и пересечение линейных подпространств. Линейная оболочка и ее свойства.	 10 Линейные подпространства. Определение, примеры. 11 Пересечение и сумма линейных подпространств. 12 Линейная оболочка и ее свойства. 	 Является ли линейным подпространством в пространстве матриц порядка п подмножество, образованное всеми: матрицами с нулевой первой строкой; нижнетреугольными матрицами; невырожденными матрицами. Подпространства

	Τ	→ → →
		$\dot{b}_1=(2;3;-1)$, $\dot{b}_2=(1;2;2)$, $\dot{b}_3=(1;1;-3)$. Найти базисы и подпространств L_1 , L_2 , L_1+L_2 . 13. Найти базис линейной оболочки системы векторов: $\dot{e}_1=(1;0;0;-1)$, $\dot{e}_2=(2;1;1;0)$, $\dot{e}_3=(1;1;1;1)$, $\dot{e}_4=(1;2;3;4)$, $\dot{e}_5=(0;1;2;3)$.
2.5. Евклидовы пространства.	13 Евклидовы пространства. 14 Свойства нормы вектора. Угол между векторами.	14. Векторы e_1, e_2, e_3 образуют ортогональный базис. Найти скалярное произведение векторов $\vec{x} = 2e_1 - 3e_2 + 4e_3$ и $\vec{y} = e_1 + e_2 - 5e_3$ и их длины, если $ e_1 = 1$, $ e_2 = 2$, $ e_3 = 2$. 15. Для каких векторов неравенство Коши-Буняковского превращается в равенство? 16. В евклидовом арифметическом пространстве R^4 найти угол между векторами $\vec{a} = (2;1;1;0)$ и $\vec{e} = (1;2;3;4)$
2.6. Ортонормированная система векторов. Ортогональное дополнение	 15 Ортогональные и ортонормированные базисы. 16 Ортогональное дополнение. 17 Процесс ортогонализации Грама-Шмидта. 	17. В евклидовом пространстве R^4 подпространство V задано системой уравнений . $\begin{cases} x_1 - 2x_2 + 3x_3 + x_4 = 0, \\ 2x_1 + 3x_2 - 4x_3 + 3x_4 = 0 \\ 3x_1 + x_2 - x_3 + 4x_4 = 0 \end{cases}$ Найти по одному ортогональному базису в пространствах V, его ортогональном дополнении W и R^4 .
3. Линейные опер	торы Аторы	gonomenin v n n .
3.1. Линейные операторы и их свойства.	18 Линейные операторы. Определение, примеры.19 Ядро, образ, дефект, ранг линейного оператора.	18. Является ли оператор $A(x)$ = $(x_1 - x_2; 2x_1 + x_3; x_2 - 2x_3)$ линейным, если вектор $\vec{x} = (x_1; x_2; x_3)$? 19. Линейный оператор задан матрицей A = $\begin{pmatrix} 1 & 1 & 3 \\ 0 & 4 & 1 \\ -1 & 2 & 3 \end{pmatrix}$ в некотором базисе. Найти базис ядра и дефект линейного оператора.
3.2. Матрицы оператора в разных базисах. Определитель оператора в разных базисах.	20 Матрица линейного оператора.21 Матрицы линейного оператора в разных базисах.	20. Найти (в том же базисе) координаты вектора у=A(x), если оператор задан

	T	
3.3. Преобразование матрицы линейного оператора.	22 Преобразование матрицы линейного оператора.	матрицей $A = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 4 & 1 \\ -1 & 2 & 3 \end{pmatrix}$ и $\vec{x} = 2e_1 + e_2 - e_3$. 21. Матрица линейного оператора в базисе (e_1, e_2, e_3) имеет вид $A = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 4 & 1 \\ -1 & 2 & 3 \end{pmatrix}$. Найти матрицу этого оператора в базисе (c_1, c_2, c_3) , если $\vec{c_1} = 2e_1 + e_2 - e_3$, $\vec{c_2} = e_1 + 3e_2 + e_3$, $\vec{c_3} = e_1 - 2e_2 + 3e_3$. 22. Задано линейное преобразование A , переводящее вектор \vec{x} в вектор \vec{y} и линейное преобразование B , переводящее вектор \vec{y} в вектор \vec{z} . Найти матрицу линейного преобразования, переводящего вектор \vec{x} в вектор \vec{z} . $\begin{cases} y_1 = 2x_1 - x_2 + 5x_3 \\ y_2 = x_1 + 4x_2 - x_3 \end{cases} \begin{cases} z_1 = y_1 + 4y_2 + 3y_3 \\ z_2 = 5y_1 - y_2 - y_3 \\ z_3 = 3y_1 + 6y_2 + 7y_3 \end{cases}$
		$\begin{cases} y_2 = x_1 + 4x_2 - x_3 & z_2 = 5y_1 - y_2 - y_3 \\ y_3 = 3x_1 - 5x_2 + 2x_3 & z_3 = 3y_1 + 6y_2 + 7y_3 \\ x \xrightarrow{A} y \xrightarrow{B} z \\ x \xrightarrow{C} z \end{cases}$
3.4. Собственные векторы и собственные значения линейного оператора.	 22 Собственные значения и собственные векторы линейного оператора. 23 Вычисление собственных значений и собственных векторов линейного оператора. 	 23. Найти собственные значения и собственные векторы линейного оператора, заданного матрицей. 1) (3 1) (2 2); 2) (1 1 3) (1 5 1) (3 1 1) 24. Пусть линейный оператор, действующий в п-мерном пространстве, имеет в некотором базисе матрицу Ā. Пусть данекотором базисе матрицу Ā. Пусть данекотором. Найти собственные значения и собственные векторы линейного
3.5.Приведение матрицы линейного оператора к диагональному виду	23 Приведение матрицы к диагональному виду.24 Приведение симметрической матрицы к диагональному виду.	оператора, матрицей которого в том же базисе является \overline{A}^n . 25. Привести к диагональному виду матрицу $A = \begin{pmatrix} 5 & 4 \\ 2 & 3 \end{pmatrix}$ 26. Привести к диагональному виду матрицу $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$.
		(3 1 1)
4. Квадратичные фор		27 H
4.1. Квадратичные	25 Определение	27. Привести квадратичную форму к
формы. Приведение	квадратичной формы.	каноническому виду.

квадратичной формы к каноническому виду.	26 Преобразование квадратичных форм.27 Квадратичные формы канонического вида.	$L(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 2x_2x_3$ 28. Привести квадратичную форму к каноническому виду методом Лагранжа $f(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + x_3^2 + 2x_1x_2 + 2x_2x_3,$ $g(x_1, x_2, x_3) = 2x_1^2 + \frac{1}{2}x_2^2 - \frac{4}{3}\sqrt{2}x_3^2 + 2x_1x_2 - 2\sqrt{2}x_3$
4.2. Критерий Сильвестра	28 Знакоопределенность квадратичных форм.29 Критерий Сильвестра.	29. Исследовать на знакоопределенность квадратичную форму: a) $L(x_1,x_2,x_3)=x_1^2+4x_2^2+3x_3^2+2x_1x_2$; б) $L(x_1,x_2,x_3)=-x_1^2-2x_2^2-2x_3^2-x_1x_2+2x_2x_3$ в) $L(x_1,x_2,x_3)=3x_1^2+3x_3^2+4x_1x_2-2x_2x_3$.

Компетенции

ОПК-1. Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности

Задание 1.

В городском парке, имеющем форму квадрата со стороной a, установлены две осветительные установки A и B, расположенные в противоположных вершинах этого квадрата. Устройство этих установок таково, что наилучшая освещенность на поверхности парка достигается в таких точках M, для которых выполняется условие: $|\mathit{MA}|^2 = 3|\mathit{MB}|^2$. Через все такие точки проложили пешеходную дорожку. В местах пересечения этой дорожки со сторонами квадрата расположены входы в парк. Пусть сторона квадрата равна $a = 36(\sqrt{5}+1)$ м.

Задание:

- 1. Вывести уравнение линии, которой принадлежат все точки пешеходной дорожки.
- 2. Найти расстояние от установки B до ближайшего входа в парк.

Запание 2

Фирма планирует организовать выпуск новой продукции, для чего берет в банке кредит в размере 250 тыс. руб. под 18 % годовых. На организацию производства фирме понадобится 60 дней, после чего она ежедневно будет получать прибыль в размере 7 тыс. руб. Временная база по начислению процентов равна 365 дням.

Задание:

- 1. Вывести формулу размера долга S (тыс. руб.) фирмы банку через t дней.
- 2. Через какое наименьшее количество дней после получения кредита фирма может погасить кредит разовым платежом за счет полученной прибыли?

Составитель (и): канд

канд. пед. наук Гридчина В.Б.

(фамилия, инициалы и должность преподавателя (ей))