Подписано электронной подписью: Вержицкий Данил Григорьевич Должность: Директор КГПИ КемГУ Дата и время: 2025-04-23 00:00:00 471086fad29a3b30e244c728abc3661ab35c9d50210dcf0e75e03a5b6fdf6436

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Кузбасский гуманитарно-педагогический институт федерального государственного бюджетного образовательного учреждения

высшего образования «Кемеровский государственный университет» Факультет информатики, математики и экономики

> УТВЕРЖДАЮ Декан
> _______ А. В. Фомина
> «30» января 2025 г.

Рабочая программа дисциплины

К.М.02.04 Методы машинного обучения

Направление подготовки

01.04.02 Прикладная математика и информатика

Направленность (профиль) подготовки

Математическое моделирование

Программа *магистратуры*

Квалификация выпускника *магистр*

Форма обучения *очная*

Год набора 2025

Новокузнецк 2025

Оглавление

1 Цель дисциплины.	3
Формируемые компетенции, индикаторы достижения компетенций, знания,	
умения, навыки	3
Место дисциплины	3
2 Объём и трудоёмкость дисциплины по видам учебных занятий. Формы	
промежуточной аттестации	3
3. Учебно-тематический план и содержание дисциплины	4
3.1 Учебно-тематический план	4
4 Порядок оценивания успеваемости и сформированности компетенций	
обучающегося в текущей и промежуточной аттестации	5
5 Материально-техническое, программное и учебно-методическое	
обеспечение дисциплины	5
5.1 Учебная литература	5
5.2 Материально-техническое и программное обеспечение дисциплины	6
5.3 Современные профессиональные базы данных и информационные	
справочные системы.	6
6 Иные сведения и (или) материалы.	7
6.1. Примерные вопросы и задания / задачи для промежуточной аттестации.	7

1 Цель дисциплины.

В результате освоения данной дисциплины у обучающегося должны быть сформированы компетенции основной профессиональной образовательной программы магистратуры (далее - ОПОП):

ОПК-2 Способен совершенствовать и реализовывать новые математические методы решения прикладных задач

Формируемые компетенции, индикаторы достижения компетенций, знания, умения, навыки

Таблица 1 – Индикаторы достижения компетенций, формируемые дисциплиной

	1	
Код и название	Индикаторы достижения	Знания, умения, навыки (ЗУВ),
компетенции	компетенции по ОПОП	формируемые дисциплиной
ОПК-2 Способен	ОПК 2.1. Анализирует	Знать:
ОПК-2 Способен совершенствовать и реализовывать новые математические методы решения прикладных задач	ОПК 2.1. Анализирует математические методы решения прикладных задач ОПК 2.2. Реализует математические методы решения прикладных задач ОПК 2.3 Модифицирует математические методы решения прикладных задач	Знать: — современные методы, используемые в машинном обучении — тенденции развития, научные и прикладные достижения в области машинного обучения Уметь: — - анализировать и модифицировать методы машинного обучения для определения наиболее подходящего при прогнозе конкретного процесса — использовать методы машинного обучения для решения научноисследовательских и прикладных задач. Владеть: навыками использования современных методов машинного обучения для
		решения прикладных задач

Место дисциплины

Дисциплина включена в модуль «Актуальные математические задачи и методы» ОПОП ВО, обязательная часть. Дисциплина осваивается на 2 курсе в 3 семестре.

2 Объём и трудоёмкость дисциплины по видам учебных занятий. Формы промежуточной аттестации.

Таблица 2 – Объем и трудоемкость дисциплины по видам учебных занятий

Общая трудоемкость и виды учебной работы по дисциплине,	Объём часов по формам обучения			
проводимые в разных формах	ОФО	ОЗФО	3ФО	
1 Общая трудоемкость дисциплины	108			
2 Контактная работа обучающихся с преподавателем (по видам	32			
учебных занятий) (всего)				
Аудиторная работа (всего):	32			
в том числе:				
лекции	16			
практические занятия, семинары				
практикумы				
лабораторные работы	16			
в интерактивной форме				
в электронной форме				

Внеаудиторная работа (всего):	76	
в том числе, индивидуальная работа обучающихся с		
преподавателем		
подготовка курсовой работы /контактная работа		
групповая, индивидуальная консультация и иные виды учебной деятельности, предусматривающие групповую или индивидуальную работу обучающихся с преподавателем)		
творческая работа (эссе)		
3 Самостоятельная работа обучающихся (всего)	76	
4 Промежуточная аттестация обучающегося и объём часов, выделенный на промежуточную аттестацию: - зачет 3 семестр		

3. Учебно-тематический план и содержание дисциплины.

3.1 Учебно-тематический план

Таблица 3 - Учебно-тематический план очной формы обучения

И	D.	Общая трудоём		Трудоемкость занятий (час.)		Формы текущего
от Редели недели недели	Разделы и темы дисциплины по занятиям	нятиям (всего занятия СРС :		занятия		контроля и промежуточно й аттестации
N I			лекц.	лаб.		успеваемости
	1. Введение в методы машинного обучения	26	4	4	18	Отчет по
1	1.2. Общая постановка задачи машинного обучения.	13	2	2	9	лабораторн
	Обучение с учителем и без учителя, обучение с					ым работам
	подкреплением. Задачи классификации, восстановления					
	регрессии, предсказания. Модели алгоритмов. Признаки.					
	Типы признаков. Понятие функционала качества.					
2	Вероятностная постановка задачи.	13	2	2	9	
2	1.3. Оценка обобщающей способности. Проблема переобучения. Критерии оценки качества работы	13	2	2	9	
	алгоритмов машинного обучения. ROC-кривые. Примеры					
	практических задач машинного обучения					
3-4	2. Метрические методы машинного обучения	26	4	4	18	Отчет по
3	2.1. Обобщенный метрический классификатор. Виды	13	2	2	9	
3	метрик. Метод ближайшего соседа. Алгоритм k-ближайших	13	2	2	9	лабораторн
	соседей. Взвешенная версия алгоритма к-ближайших					ым работам
	соседей.					
4	2.2. Метод окна Парзена. Метод потенциальных функций.	13	2	2	9	
-	Понятие эталона. Отступы и классификация объектов.	10	_	_		
5-6	3. Линейные методы машинного обучения	28	4	4	20	Отчет по
5	3.1. Постановка задач линейной регрессии и линейной	14	2	2	10	лабораторн
	классификации. Метод наименьших квадратов в матричной					ым работам
	форме. Аналитическое решение. Регуляризация в задач					ым расотам
	регрессии. Мультиколлинеарность и плохая					
	обусловленность ковариационной матрицы.					
6	3.2. Гребневая регрессия. Метод лассо. Линейные	14	2	2	10	
	классификаторы. Метод стохастического градиента.					
	Улучшение сходимости метода SGD. Логистическая					
	регрессия. Метод опорных векторов. Линейно разделимые					
	выборки. Двойственная задача. Нелинейные обобщения.					
	Возможные виды ядер					
7-8	4. Кластеризация и вероятностное моделирование данных	28	4	4	20	Отчет по
7	4.1. Методы кластериации. Типы кластерных структур.	14	2	2	10	лабораторн
	Функционал качества кластеризации. ЕМ-алгоритм. Метод					ым работам
	к-средних.	1.1	2		1.0	
8	4.2. Иерархическая кластеризация. Формула Ланса-	14	2	2	10	
	Уильямса. Быстрая агломеративная кластеризация.					

ице	Разделы и темы дисциплины		Общая трудоём кость	Трудоемкость занятий (час.)		занятий (час.)		тий (час.) текущего контроля	
№ № недели	по занятиям	М	(всего час.)	Ауди заня лекц.	•	CPC	тромежуточно й аттестации успеваемости		
	Промежуточная аттестация (зачет 3 семестр)								
		Всего:	108	16	16	76	Зачет		

4 Порядок оценивания успеваемости и сформированности компетенций обучающегося в текущей и промежуточной аттестации.

Для положительной оценки по результатам освоения дисциплины обучающемуся необходимо выполнить все установленные виды учебной работы. Оценка результатов работы обучающегося в баллах (по видам) приведена в таблице 4.

Таблица 4 - Шкала и показатели оценивания результатов учебной работы обучающихся по видам в балльно-рейтинговой системе (БРС)

Учебная работа	Сумма	Виды и результаты	Оценка в аттестации	Баллы	
(виды)	баллов	учебной работы	(шкала и показатели оценивания)		
\Текущая учебная	80	Лекционные занятия	5 баллов посещение и конспект 1	15-40	
работа в семестре		(конспект). (8 занятий)	лекционного занятия		
(Посещение					
занятий по		Лабораторные работы	Отчет по лабораторной работе (4	18-40	
расписанию и			отчета):		
выполнение			5 баллов (выполнено 51 - 65% заданий)		
заданий)			7 балла (выполнено 66 - 85% заданий)4		
заданни)			10 баллов (выполнено 86 - 100% заданий)		
Итого по текуще	й работе в	семестре		41 - 80	
Промежуточная	20	Решение задачи 1.	5 баллов (пороговое значение)	5-10	
аттестация			10 баллов (максимальное значение)		
(зачет)		Решение задачи 2.	5 баллов (пороговое значение)	5-10	
			10 баллов (максимальное значение)		
Итого по промежуточной аттестации (зачет)				10-20	
Суммарная оценка по дисциплине: Сумма баллов текущей и промежуточной аттестации 51 – 100 б.					

5 Материально-техническое, программное и учебно-методическое обеспечение дисциплины.

5.1 Учебная литература

Основная учебная литература

1. Флах, П. Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных / П. Флах. — Москва : ДМК Пресс, 2015. — 400 с. — ISBN 978-5-97060-273-7. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/69955. — Режим доступа: для авториз. пользователей.

Дополнительная учебная литература

- 1. Гладилин, П. Е. Технологии машинного обучения : учебно-методическое пособие / П. Е. Гладилин, К. О. Боченина. Санкт-Петербург : НИУ ИТМО, 2020. 75 с. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/190885. Режим доступа: для авториз. пользователей.
- 2. Шалев-Шварц, Ш. Идеи машинного обучения : учебное пособие / Ш. Шалев-Шварц, Бен-ДавидШ. ; перевод с английского А. А. Слинкина. — Москва : ДМК Пресс, 2019. — 436 с. — ISBN

- 978-5-97060-673-5. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/131686. Режим доступа: для авториз. пользователей.
- 3. Баймуратов, И. Р. Методы автоматизации машинного обучения : учебное пособие / И. Р. Баймуратов. Санкт-Петербург : НИУ ИТМО, 2020. 40 с. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/190871. Режим доступа: для авториз. пользователей.
- 4. Маккинни, У. Руthon и анализ данных / У. Маккинни ; перевод с английского А. А. Слинкина. 2-ое изд., испр. и доп. Москва : ДМК Пресс, 2020. 540 с. ISBN 978-5-97060-590-5. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/131721. Режим доступа: для авториз. пользователей.

5.2 Материально-техническое и программное обеспечение дисциплины.

Учебные занятия по дисциплине проводятся в учебных аудиториях КГПИ КемГУ:

ученые занятия по дисциплине проводятся в ученых аудиториях в	d Tivi Kemi 3.
410 Учебная аудитория (мультимедийная) для проведения:	654079,
- занятий лекционного типа;	Кемеровская
- групповых и индивидуальных консультаций;	область, г.
- текущего контроля и промежуточной аттестации;	Новокузнецк,
Специализированная (учебная) мебель: доска меловая, кафедра, моноблоки	пр-кт
аудиторные.	Металлургов,
Оборудование: стационарное - компьютер, экран, проектор.	д. 19
Используемое программное обеспечение: MSWindows (MicrosoftImaginePremium),	
LibreOffice (свободно распространяемое ПО), Яндекс.Браузер (отечественное	
свободно распространяемое ПО).	
Интернет с обеспечением доступа в ЭИОС.	
508 Лаборатория компьютерного моделирования	654079,
Учебная аудитория (мультимедийная) для проведения:	Кемеровская
- занятий лабораторного типа;	область, г.
- самостоятельной работы;	Новокузнецк,
Специализированная (учебная) мебель: доска меловая, кафедра, столы, стулья.	пр-кт
Оборудование для презентации учебного материала: стационарное - компьютер	Металлургов,
преподавателя, проектор, экран.	д. 19
Лабораторное оборудование: стационарное – компьютеры для обучающихся (18	
шт.).	
Используемое программное обеспечение: MSWindows (MicrosoftImaginePremium),	
LibreOffice (свободно распространяемое ПО), FoxitReader (свободно	
распространяемое ПО), Firefox 14 (свободно распространяемое ПО),	
Яндекс.Браузер (отечественное свободно распространяемое ПО), Орега 12	
(свободно распространяемое ПО), Python с расширениями PIL, Py OpenGL,	
(свободно распространяемое ПО)	
Интернет с обеспечением доступа в ЭИОС.	

5.3 Современные профессиональные базы данных и информационные справочные системы.

Перечень СПБД и ИСС по дисциплине

- 1. Информационная система «Общероссийский математический портал», режим доступа : http://www.mathnet.ru/
- 2. Информационная система «Экспонента» центр инженерных технологий и моделирования, режим доступа: http://www.exponenta.ru
- 3. База данных Science Direct (более 1500 журналов издательства Elsevier, среди них издания по математике и информатике), режим доступа :https://www.sciencedirect.com

- 4. Информационная система «Единое окно доступа к информационным ресурсам» http://window.edu.ru/catalog/
- 5. Базы данных и аналитические публикации на портале «Университетская информационная система Россия», режим доступа: https://uisrussia.msu.ru/
- 6. UCI Machine Learning Repository репозиторий наборов данных для машинного обучения http://archive.ics.uci.edu/ml/
- 7. IAPR Education Committee & Resources коллекция ссылок на образовательные ресурсы по распознаванию образов, машинному обучению, обработке сигналов, обработке изображений и компьютерному зрению, поддерживаемая Международной ассоциацией распознавания образов http://homepages.inf.ed.ac.uk/rbf/IAPR/index.php
- 8. Портал по интеллектуальному анализу данных, поддерживаемый Григорием Пятецким-Шапиро http://www.kdnuggets.com/
- 9. Профессиональный информационно-аналитический ресурс, посвященный машинному обучению, распознаванию образов и интеллектуальному анализу данных. http://machinelearning.ru

6 Иные сведения и (или) материалы.

6.1. Примерные вопросы и задания / задачи для промежуточной аттестации

Форма промежуточной аттестации зачет.

Таблица 5 - Типовые (примерные) контрольные вопросы и задания

Разделы и темы	Примерные теоретические вопросы	Примерные
		практические задания / задачи
Введение в методы машинного обучения	 Постановка задачи машинного обучения. Обучение с учителем и без учителя. Типы признаков Типы задач. Линейные модели Примеры задач обучения без учителя (3-5 примеров) Примеры задач обучения с учителем (3-5 примеров) Функционал качества. Минимизация эмпирического риска Переобучение. Методы валидации моделей. Кроссвалидация 	Покажите, что с ростом размерности пространства признаков при равномерном распределении точек в кубе [0; 1] d вероятность попасть в куб [0; 0, 99] d стремится к нулю. Это одна из иллюстраций проклятия размерностей (dimension curse). Попробуйте придумать или найти еще какуюнибудь иллюстрацию к этому явлению и кратко изложить. В чем повашему суть проклятия размерности и какое это имеет значение для задач машинного обучения?
Метрические методы машинного обучения	7. Метрические методы классификации. Виды расстояний 8. Метод ближайшего соседа. Метод k ближайших соседей. Взвешенный метод k ближайших соседей 9. Отбор эталонных объектов. Понятие отступа.	1. Может ли в методе <i>k</i> ближайших соседей при <i>k</i> = 2 получиться лучший результат, чем
ооучения	9. Отоор эталонных объектов. Понятие отступа. Классификация объектов 10. Регрессия по соседним объектам. Окно Парзена	лучшии результат, чем при $k = 1$? Отказы от классификации тоже считать ошибками.

Линейные	11. Линейная регрессия. Постановка задачи. Матричная	1. Покажите
методы	формулировка. Точное решение	асимптотическую
машинного	12. Регуляризация в линейной регрессии. Виды	эквивалентность
	регуляризаторов	
обучения		энтропийного и статистического
	13. Гребневая регрессия. Лассо-регрессия	
	14. Итеративная версия решения задачи линейной регрессии	критериев
	без регуляризации и с регуляризацией. Метод градиентного	информативности.
	спуска	2. Какая стратегия
	15. Вероятностная модель данных. Максимум	поведения в листьях
	правдоподобия	решающего дерева
	16. Линейный классификатор. Отступы. Функционал	приводит к меньшей
	качества	вероятности ошибки:
	17. Метод стохастического градиента (SGD). Преимущества	отвечать тот класс,
	и недостатки	который преобладает в
	18. Методы улучшения сходимости SGD (метод моментов,	листе, или отвечать
	метод Нестерова)	случайно с тем же
	19. Методы улучшения сходимости SGD (AdaGrad,	распределением
	RMSProp, Adam)	классов, что и в листе?
	20. Логистическая регрессия. Простой байесовский	3. Покажите, что
	классификатор. Сигмоидальная функция	регуляризатор в задаче
	21. Метод опорных векторов (SVM). Постановка задачи для	линейной
	линейно разделимой выборки без выбросов	классификации имеет
	22. Отступы в SVM. Учет выбросов. Формулировка теоремы	вероятностный смысл
	Куна-Таккера. Двойственная задача	априорного
	23. Классификация объектов в SVM. Постановка задачи	распределения
	через двойственные переменные λ	параметров моделей.
	24. Нелинейные ядра в методе SVM. Примеры ядер.	Какие распределения
	Способы их построения	задают $l1$ -регуляризатор
	25. Основные метрики качества алгоритмов. ROC-кривые	и <i>l</i> 2-регуляризатор
Кластеризация и	26. Методы кластериации. Типы кластерных структур	Покажите, как
вероятностное	27. Функционал качества кластеризации.	получается условная
моделирование	28. ЕМ-алгоритм в кластерном анализе	оптимизационная
данных	29. Метод k-средних	задача, решаемая в SVM
данных	30. Иерархическая кластеризация. Формула Ланса-Уильямса	из соображений
	31. Быстрая агломеративная кластеризация.	максимизации
	31. Выстрая агломеративная кластеризация.	разделяющей полосы
		между классами.
		Можно отталкиваться
		от линейно разделимого
		случая, но итоговое
		выражение должно
		быть для общего. Как
		эта задача сводится к
		безусловной задаче
		оптимизации?

Составитель (и): Решетникова Е.В., доцент